精英家教网 > 初中数学 > 题目详情
20.已知等腰△ABC中一腰上的高与另一腰的夹角为30°,则△ABC的底角度数为30或60度.

分析 等腰三角形一腰上的高与另一腰的夹角为30°,但没有明确此等腰三角形是锐角三角形还是钝角三角形,因此,有两种情况,需分类讨论.

解答 解:当等腰三角形为锐角三角形时,如图1,
由已知可知,∠ABD=30°,
又∵BD⊥AC,
∴∠ADB=90°,
∴∠A=60°,
∴∠ABC=∠C=60°.
当等腰三角形为钝角三角形时,如图2,
由已知可知,∠ABD=30°,
又∵BD⊥AC,
∴∠DAB=60°,
∴∠C=∠ABC=30°.
故答案为:30或60.

点评 本题考查了等腰三角形的性质,解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.正确分类是解答本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.如图,在△ABC中,点D在AB边上,点E在AC边上,点F在BC边上,DE∥BC,EF∥AB,则下列结论正确的是(  )
A.$\frac{AD}{DB}=\frac{DE}{BC}$B.$\frac{BF}{BC}=\frac{AF}{AD}$C.$\frac{AE}{EC}=\frac{BF}{FC}$D.$\frac{EF}{AB}=\frac{DE}{BC}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知$\sqrt{x+2016}$-$\sqrt{x+2015}$=$\frac{1}{2017}$,那么$\sqrt{x+2016}$+$\sqrt{x+2015}$的值是2017.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图是某工厂要设计生产的正六棱柱的立体图形,它的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.2015年,曲靖市完成农村危房改造6.08万户,6.08万这个数字用科学记数法表示为6.08×104

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在边长为4的正方形ABCD中,E为边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,则BG的长为$\frac{4}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知x,y,z满足x-y-z=0,2x+3y-7z=0.则$\frac{{{x^2}+4xz+4{z^2}}}{{{x^2}-{y^2}}}$的值是$\frac{16}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若-$\frac{1}{3}$a2b的系数为m,多项式-x2y+2xy-5的次数是n,则m+n=$\frac{8}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.下面是小刚同学做的一道有理数的混合运算题::-23÷$\frac{4}{9}$×(-$\frac{3}{2}$)2
解:原式=8÷$\frac{4}{9}$×$\frac{9}{4}$=8.四位同学看了小刚的解答,给出4个看法:
①计算-23时符号错了,应为-8;
②计算结果是-8;
③运算顺序错了;
④第一步应该等于-8×$\frac{4}{9}$×$\frac{9}{4}$.其中正确的是①③.(用序号表示即可)

查看答案和解析>>

同步练习册答案