精英家教网 > 初中数学 > 题目详情
已知抛物线过点A(-1,0),B(0,6),对称轴为直线x=1
(1)求抛物线的解析式
(2)画出抛物线的草图
(3)根据图象回答:当x取何值时,y>0
(1)(4分)(2)图略(3分)(3)

试题分析:设该抛物线的解析式是当A,B在抛物线上时则有x=-1时,4a+c=0,a+c=6,所以
由题意知:=,所以当时,满足条件
点评:本题属于对抛物线的基本知识的理解和运用
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.
(1)求点B的坐标;
(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,以PE为边在PE右侧作正方形PEDC(当点P运动时,点C、D也随之运动).
①当正方形PEDC顶点D落在此抛物线上时,求OP的长;
②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,在QF的左侧作正方形QFMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个正方形分别有一条边恰好落在同一条直线上,求此刻t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线的图象上,过点B作轴,垂足为D,且B点横坐标为

(1)求证:
(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使 △ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等边△ABC的边长为4,M为BC上一动点(M不与B、C重合),若EB=1,∠EMF=60°,点E在AB边上,点F在AC边上.设BM=x,CF=y,则当点M从点B运动到点C时,y关于x的函数图象是(   )

A          B             C             D

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一条抛物线经过点(0,0)、(12,0),则这条抛物线的对称轴是直线                

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将二次函数化为的形式为_________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,则下列结论中正确的是:(  )

A  a>0  b<0  c>0  
B  a<0  b<0  c>0
C  a<0  b>0  c<0
D  a<0  b>0  c>0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数的图象和性质.
①填写下表,画出函数的图象;
x




1
2
3
4

y

 
 
 
 
 
 
 


②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数的最小值.
【解决问题】用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的图象上有A(),B(),C(2,)三个点,则的大小关系是(   )。
A.>>B.>>C.>>D.>>

查看答案和解析>>

同步练习册答案