精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c的顶点为P,对称轴直线x=1与x轴交于点D,抛物线与x轴交于A、B两点,与y轴交于点C,其中A(-1,0)、C(0,3).
(1)求此抛物线的解析式;
(2)点E在线段BC上,若△DEB为等腰三角形,求点E的坐标;
(3)点F、Q都在该抛物线上,若点C与点F关于直线x=1成轴对称,连结BF、BQ,如果∠FBQ=45°,求点Q的坐标;
(4)将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转后的图形为△BO′C′,BO′与BP重合时,则△BO′C′不在BP上的顶点C′的坐标为
(3+
3
5
5
9
5
5
(3+
3
5
5
9
5
5
(直接写出答案).
分析:(1)根据抛物线对称轴和点A、C的坐标,列出关于a、b、c的三元一次方程组,然后求解即可;
(2)求出点B的坐标,然后求出OB=OC=3,从而得到∠OBC=∠OCB=45°,对称轴与BC的交点即为所求的点E,BD的垂直平分线与BC的交点也是点E的位置,然后分别求出点E的坐标即可;
(3)设BQ与FC的延长线相交于点H,根据两直线平行,内错角相等可得∠FCB=∠OBC=45°,从而得到∠FCB=∠FBQ,根据两组角对应相等,两三角形相似求出△BFH和△CFB相似,利用相似三角形对应边成比例列式求出FH,再求出CH的长,得到点H的坐标,利用待定系数法求一次函数解析式求出BH的解析式,与抛物线联立求解即可得到点Q的坐标;
(4)求出顶点P的坐标,根据点P、C的坐标求出PC与y轴的夹角为45°,从而得到∠PCB=90°,利用勾股定理列式求出PC、BC、PB,过点B作x轴的垂线BG,过点C′作C′G⊥BG交点为G,再求出∠C′BG=∠PBC,根据两组角对应相等,两三角形相似求出△PBC和△C′BG相似,根据相似三角形对应边成比例列式求出BG、C′G,然后写出点C′的坐标即可.
解答:解:(1)∵抛物线y=ax2+bx+c经过A(-1,0)、C(0,3),对称轴为直线x=1,
a-b+c=0
c=3
-
b
2a
=1

解得
a=-1
b=2
c=3

∴抛物线的解析式为y=-x2+2x+3;

(2)∵点A(-1,0),对称轴为直线x=1,
∴点B的坐标为(3,0),
又∵C(0,3),
∴OB=OC=3,
∴∠OBC=∠OCB=45°,
∴当点E为对称轴与BC的交点,BD的垂直平分线与BC的交点时,都能使△DEB是等腰三角形,
易求直线BC的解析式为y=-x+3,
E为对称轴与BC的交点时,x=1,y=-1+3=2,
E为BD的垂直平分线与BC的交点时,x=2,y=-2+3=1,
∴点E的坐标为(1,2)或(2,1)时,△DEB是等腰三角形;

(3)如图,设BQ与FC的延长线相交于点H,
∵点C与点F关于直线x=1成轴对称,
∴F(2,3),CF∥x轴,
∴CF=2,∠FCB=∠OBC=45°,
∵∠FBQ=45°,
∴∠FCB=∠FBQ,
又∵∠F=∠F,
∴△BFH∽△CFB,
FB
CF
=
FH
FB

由勾股定理得,FB=
(2-3)2+(3-0)2
=
10

10
2
=
FH
10

解得FH=5,
∴CH=FH-CF=5-2=3,
∴点H的坐标为(-3,3),
设直线BH的解析式为y=kx+b(k≠0),
3k+b=0
-3k+b=3

解得
k=-
1
2
b=
3
2

∴直线BH的解析式为y=-
1
2
x+
3
2

联立
y=-x2+2x+3
y=-
1
2
x+
3
2

解得
x1=3
y1=0
(为点B坐标,舍去),
x2=-
1
2
y2=
7
4

∴点Q的坐标为(-
1
2
7
4
);

(4)∵y=-x2+2x+3=-(x-1)2+4,
∴顶点P(1,4),
∵点C(0,3),
∴PC与y轴的夹角为45°,
∴∠PCB=180°-45°-45°=90°,
由勾股定理得,PC=
(1-0)2+(4-3)2
=
2

BC=
32+32
=3
2

PB=
(3-1)2+(0-4)2
=2
5

∵△BOC绕点B旋转后为△BO′C′,
∴C′B=BC=3
2
,∠C′BO′=∠OBC=45°,
如图,过点B作x轴的垂线BG,过点C′作C′G⊥BG交点为G,
∵∠C′BG+∠GBP=∠C′BO′=45°,
∠PBC+∠GBP=∠CBG=90°-∠OBC=90°-45°=45°,
∴∠C′BG=∠PBC,
又∵∠PCB=∠C′GB=90°,
∴△PBC∽△C′BG,
C′G
PC
=
BG
BC
=
C′B
PB

C′G
2
=
BG
3
2
=
3
2
2
5

解得BG=
9
5
5
,C′G=
3
5
5

又∵OB=3,
∴点C′的坐标为(3+
3
5
5
9
5
5
).
点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,等腰三角形的性质,相似三角形的判定与性质,联立两函数解析式求交点坐标,勾股定理,(2)难点在于要分情况讨论确定出点E的位置,(3)作辅助线构造出相似三角形是解题的关键,(4)根据旋转的性质以及点的坐标特征,作辅助线构造并确定出与△PBC相似的三角形是解题的关键,也是最大的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案