精英家教网 > 初中数学 > 题目详情

在△ABC中,点D,G分别在边AB,AC上,点E,F在边BC上.已知DG∥BC,DE∥FG,BE=DE,CF=FG,则∠A的度数


  1. A.
    等于90°
  2. B.
    等于80°
  3. C.
    等于72°
  4. D.
    条件不足,无法计算
A
分析:根据已知易证∠B=∠BDE,∠AGD=∠CGF,所以∠AGD+∠CGF+∠DGF=180,利用三角形外角的性质,知∠DGF+∠GDE=180°,所以∠B+∠C=90°,所以∠A的度数可求.
解答:∵BE=DE,
∴∠B=∠BDE,
∵四边形DEFG是平行四边形,
∴∠ADG=∠B,
∴∠ADG=∠BDE.
同理:∠AGD=∠CGF,
∵∠AGD+∠CGF+∠DGF=180°,∠DGF+∠GDE=180°,
∴∠AGD+∠CGF=∠GDE,
∵∠ADG+∠BDE+∠GDE=180°,
∴∠ADG+∠BDE+∠AGD+∠CGF=180°,
∴∠ADG+∠AGD=90°,
∴∠B+∠C=90°,
∴∠A=90°.
故选A.
点评:此题主要考查了平行四边形的性质,三角形的性质.在做这类题时要注意找到等角,等角替换由三角形的内角和定义最后求值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,点O是AC边上的一个动点,过点O作MN∥BC,交∠ACB的平分线于点E,交精英家教网∠ACB的外角平分线于点F.
(1)求证:OC=
12
EF;
(2)当点O位于AC边的什么位置时,四边形AECF是矩形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,点D,E分别在边AB,AC上,给出5个论断:①CD⊥AB;②BE⊥AC;③AE=CE;④∠ABE=30°;⑤CD=BE.
(1)如果论断①②③④都成立,那么论断⑤一定成立吗?答:
 

(2)从论断①②③④中选取3个作为条件,将论断⑤作为结论,组成一个真命题,那么你选的3个论断是
 
(只需填论断的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•西城区一模)如图,在△ABC中,点D是BC上一点,∠B=∠DAC=45°.
(1)如图1,当∠C=45°时,请写出图中一对相等的线段;
AB=AC或AD=BD=CD;
AB=AC或AD=BD=CD;

(2)如图2,若BD=2,BA=
3
,求AD的长及△ACD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•洛江区质检)在△ABC中,点G是重心,若BC边上的中线为6cm,则AG=
4
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于(  )

查看答案和解析>>

同步练习册答案