精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠C=90°AC=BCDBC上一点,且DEABE,若DE=CDAB=8cm,则DEB的周长为(

A.4cmB.8cmC.10cmD.14cm

【答案】B

【解析】

因为DECD相等,DEAB,∠C=90°,所以AD平分CAB,可证得△ACD≌△AED,得到AC=AE,再根据△BDE为等腰直角三角形得出DE=BE,从而可得△DEB的周长.

解:∵∠C=90°DEABDE=CD
∴∠C=AED=90°,∠CAD=EAD

RtACDRtAED中,


∴△ACD≌△AEDHL),
AC=AE
又∵∠AED=90°,∠B=45°
可得△EDB为等腰直角三角形,DE=EB=CD
∴△DEB的周长=DE+ BE +DB

=CD+DB+ BE

=CB+ BE

=AC+BE

=AE+BE

=AB

=8
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:△ABC是圆的内接三角形,BAC与ABC的角平分线AE、BE相交于点E,延长AE交圆于点D,连接BD、DC,且∠BCA=60°.

(1)求证:BED为等边三角形;

(2)若∠ADC=30°,⊙O的半径为2,求BD长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知BC是⊙O的直径,点DBC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求证:直线AD是⊙O的切线;

(2)若AEBC,垂足为M,O的半径为4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场计划购进AB两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:

类型 价格

进价(元/盏)

售价(元/盏)

A

25

45

B

40

70

1)若商场进货款为3100元,则这两种台灯各购进多少盏?

2)若商场在3200元的限额内购进这两种台灯,且A型台灯的进货数量不超过B型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形纸片ABCD中,AB12厘米,折叠纸片,使得点A落在CD边上的点P处,折痕为MN,点MN分别在边ADAB上,当点P恰好是CD边的中点时,点N与点B重合,若在折叠过程中NPNC,则PD_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:把一张给定大小的矩形卡片ABCD放在宽度为10mm的横格纸中,恰好四个顶点都在横格线上,已知α25°,求长方形卡片的周长。(精确到1mm,参考数据: sin25°≈0cos25°≈0.9tan25°≈0.5.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x轴、y轴分别相交于点FE,点A的坐标为(60)P(xy)是直线上的一个动点.

1)试写出点P在运动过程中,OAP的面积Sx的函数关系式;

2)当点P运动到什么位置,OAP的面积为,求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.

设每个房间每天的定价增加x元.求:

1)房间每天的入住量y(间)关于x(元)的函数关系式;

2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;

3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:如图1所示的图形,像我们常见的学习用品—圆规.我们不妨把这样图形叫做“规形图”.

1)观察“规形图”,试探究之间的关系,并说明理由;

2)请你直接利用以上结论,解决以下三个问题:

①如图2,把一块三角尺放置在上,使三角尺的两条直角边恰好经过点,则________________

②如图3平分平分,若,求的度数;

③如图4等分线相交于点,若,求的度数.

查看答案和解析>>

同步练习册答案