【题目】探究与发现:如图1所示的图形,像我们常见的学习用品—圆规.我们不妨把这样图形叫做“规形图”.
(1)观察“规形图”,试探究与、、之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺放置在上,使三角尺的两条直角边、恰好经过点、,,则________________;
②如图3,平分,平分,若,,求的度数;
③如图4,,的等分线相交于点,,,,若,,求的度数.
【答案】(1)∠BDC=∠A+∠B+∠C;详见解析(2)①50°②85°③50°
【解析】
(1)首先连接AD并延长,然后根据外角的性质,即可判断出∠BDC=∠A+∠B+∠C.
(2)①由(1)可得∠ABX+∠ACX+∠A=∠BXC,然后根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的值.
②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB,再根据∠DAE=40°,∠DBE=130°,求出∠ADB+∠AEB的值;然后根据∠DCE=(∠ADB+∠AEB)+∠DAE,即可求出∠DCE的度数.
③设,结合已知可得,,再根据(1)可得,,即可判断出∠A的度数.
解:(1)∠BDC=∠A+∠B+∠C,理由如下:
如图(1),连接AD并延长.
图1
根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,
又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,
∴∠BDC=∠A+∠B+∠C;
(2)①由(1)可得∠ABX+∠ACX+∠A=∠BXC,
∵∠A=40°,∠BXC=90°,
∴∠ABX+∠ACX=90°-40°=50°,
故答案为50°;
②由(1)可得∠DBE=∠DAE+∠ADB+∠AEB,
∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,
∴(∠ADB+∠AEB)=90°÷2=45°,
∴∠DCE=(∠ADB+∠AEB)+∠DAE
=45°+40°=85°;
③设,.
则,,
则,
解得
所以
即的度数为50°.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC,D为BC上一点,且DE⊥AB于E,若DE=CD,AB=8cm,则△DEB的周长为( )
A.4cmB.8cmC.10cmD.14cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.
(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x>5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;
(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).
A、众数是6吨 B、平均数是5吨 C、中位数是5吨 D、方差是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边中,点在边上,过点且分别与边、相交于点、、是上的点,判断下列说法错误的是( )
A. 若,则是的切线 B. 若是的切线,则
C. 若,则是的切线 D. 若,则是的切线
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.
(1)建立如图所示的平面直角坐标系,求抛物线的解析式.
(2)该运动员身高1.8m,在这次跳投中,球在头顶上0.25m处出手,
问:球出手时,他距离地面的高度是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com