精英家教网 > 初中数学 > 题目详情

【题目】已知:O为ABC的外接圆,AB=AC,E是AB的中点,连OE,OE=,BC=8,则O的半径为(  )

A. 3 B. C. D. 5

【答案】C

【解析】

分析: 如图,作辅助线;首先求出;根据勾股定理求出DE的长度;运用射影定理即可求出AD的长度,即可解决问题.

详解:如图,作直径AD,连接BD;
∵AB=AC, ,
∴AD⊥BC,BE=CE=4;
∵OE⊥AB,
∴AE=BE,OA=OB,
∴OE△ABD的中位线,
∴BD=2OE=5;
由勾股定理得:
,
∴DE=3;
∵AD⊙O的直径,
∴∠ABD=90°,由射影定理得:
,BD=5,DE=3,
∴AD= , ⊙O半径=.故选C.

点睛: 本题主要考查了垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断、推理或解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线x轴、y轴分别相交于点FE,点A的坐标为(60)P(xy)是直线上的一个动点.

1)试写出点P在运动过程中,OAP的面积Sx的函数关系式;

2)当点P运动到什么位置,OAP的面积为,求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.

(参考数据:=1.41,=1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:如图1所示的图形,像我们常见的学习用品—圆规.我们不妨把这样图形叫做“规形图”.

1)观察“规形图”,试探究之间的关系,并说明理由;

2)请你直接利用以上结论,解决以下三个问题:

①如图2,把一块三角尺放置在上,使三角尺的两条直角边恰好经过点,则________________

②如图3平分平分,若,求的度数;

③如图4等分线相交于点,若,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).

(1)求反比例函数和一次函数的表达式;

(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理揭示了直角三角形三边之间的关系,其中蕴含着丰富的科学知识和人文价值.如图所示,是一棵由正方形和含角的直角三角形按一定规律长成的勾股树,树的主干自下而上第一个正方形和第一个直角三角形的面积之和为,第二个正方形和第二个直角三角形的面积之和为,…,第个正方形和第个直角三角形的面积之和为

设第一个正方形的边长为1

请解答下列问题:

1______

2)通过探究,用含的代数式表示,则______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是ABC的内心,AE的延长线与ABC的外接圆相交于点D.

(1)BAC=70°,求CBD的度数;

(2)求证:DE=DB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点AACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.

(1)求抛物线的解析式;

(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;

(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的垂直平分线相交于点,若等于76°,则____________

查看答案和解析>>

同步练习册答案