精英家教网 > 初中数学 > 题目详情

【题目】某小区开展了行车安全,方便居民的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i12.4ABBC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC13°(此时点BCD在同一直线上).

1)求这个车库的高度AB

2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).

(参考数据:sin13°≈0.225cos13°≈0.974tan13°≈0.231cot13°≈4.331

【答案】(1)这个车库的高度AB为5米;(2)斜坡改进后的起点D与原起点C的距离为9.7米.

【解析】

1)根据坡比可得,利用勾股定理求出AB的长即可;(2)由(1)可得BC的长,由∠ADB的余切值可求出BD的长,进而求出CD的长即可.

1)由题意,得:∠ABC90°i12.4

RtABC中,i

AB5x,则BC12x

AB2+BC2AC2

AC13x

AC13

x1

AB5

答:这个车库的高度AB5米;

2)由(1)得:BC12

RtABD中,cotADC

∵∠ADC13°AB5

DB5cot13°≈21.655m),

DCDBBC21.655129.655≈9.7(米),

答:斜坡改进后的起点D与原起点C的距离为9.7米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解方程:

(1); (2)

(3)2x2-6x-1=0. (4)2y(y+2)-y=2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x1≤x≤90)天的售价与销售量的相关信息如下表:

时间x(天)

1≤x50

50≤x≤90

售价(元/件)

x40

90

每天销量(件)

2002x

已知该商品的进价为每件30元,设销售该商品的每天利润为y[

1)求出yx的函数关系式;

2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?

3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC∽△A′B′C′,AB=4 cm,A′B′=3 cm,AD,A′D′分别为ABCA′B′C′的中线,下列结论中:①ADA′D′=43;②△ABD∽△A′B′D′;③△ABD∽△A′B′C′;④△ABCA′B′C′对应边上的高之比为43.其中结论正确的序号是_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=14.5米,NF=0.2米.设太阳光线与水平地面的夹角为α,当α=56.3°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的NF这层上晒太阳.

(1)求楼房的高度约为多少米?

(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.(参考数据:sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB6AD8,点E是边AD上一点,EMBCAB于点M,点N在射线MB上,且AEAMAN的比例中项.

1)如图1,求证:∠ANE=∠DCE

2)如图2,当点N在线段MB之间,联结AC,且ACNE互相垂直,求MN的长;

3)连接AC,如果AEC与以点EMN为顶点所组成的三角形相似,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax22ax3a≠0)的图象经过点A

1)求二次函数的对称轴;

2)当A(﹣10)时,

①求此时二次函数的表达式;

②把yax22ax3化为yaxh2+k的形式,并写出顶点坐标;

③画出函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C是⊙O上一点,连接BCACODBCE

1)求证:ODAC

2)若BC8DE3,求⊙O的直径.

查看答案和解析>>

同步练习册答案