精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点C是⊙O上一点,连接BCACODBCE

1)求证:ODAC

2)若BC8DE3,求⊙O的直径.

【答案】(1)证明见解析;(2)

【解析】

1)由圆周角定理得出∠C90°,再由垂径定理得出∠OEB=∠C90°,即可得出结论;

2)令⊙O的半径为r,由垂径定理得出BECEBC4,由勾股定理得出方程,解方程求出半径,即可得出⊙O的直径.

1)证明:∵AB是⊙O的直径,

∴∠C90°

ODBC

∴∠OEB=∠C90°

ODAC

2)解:令⊙O的半径为r

根据垂径定理可得:BECEBC4

由勾股定理得:r242+r32

解得:r

所以⊙O的直径为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某小区开展了行车安全,方便居民的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i12.4ABBC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC13°(此时点BCD在同一直线上).

1)求这个车库的高度AB

2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).

(参考数据:sin13°≈0.225cos13°≈0.974tan13°≈0.231cot13°≈4.331

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是(  )

A. y1 B. y2 C. y3 D. y4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在测量河流宽度的综合与实践活动中,小李同学设计的方案及测量数据如下:在河对岸边选定一个目标点A,在近岸取点BCD (BCD在同一条直线上),ABBDACB=45°,CD=20米,且.若测得∠ADB=25°,请你帮助小李求河的宽度AB.(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,结果精确到0.1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实国务院的指示精神,某地方政府出台了一系列三农优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.

1)求wx之间的函数关系式.

2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?

3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在扇形AOB中,∠AOB=90°,点COA的中点,CE⊥OA于点E,以点O为圆心,OC的长为半径作OB于点D.若OA=4,则图中阴影部分的面积为(  )

A. + B. +2 C. + D. 2+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O半径为10cm,弦AB垂直平分半径OC,并交OC于点D

1)求弦AB的长;

2)求弧AB的长,并求出图中阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图的名称;

             视图       视图

(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)将下图中的各个点的纵坐标不变,横坐标都乘﹣1,与原图案相比,所得图案有什么变化?请画出图形并写出结论;

(2)将下图中的各个点的横坐标不变,纵坐标都乘以-1,与原图案相比,所得图案有什么变化?请画出图形并写出结论;

(3)将下图中的各个点的横坐标不变,纵坐标都+3,与原图案相比,所得图案有什么变化?请画出图形并写出结论;

(4)将下图中的各个点的横坐标﹣2,纵坐标不变,与原图案相比,所得图案有什么变化?请画出图形并写出结论;

(5)将下图中的各个点的横坐标都乘2,纵坐标都乘2,与原图案相比,所得图案有什么变化?请画出图形并写出结论.

查看答案和解析>>

同步练习册答案