精英家教网 > 初中数学 > 题目详情
先计算
1
1-x
+
1
1+x
,通过以上计算,请你用一种你认为较简便的方法计算
1
1-x
+
1
1+x
+
2
1+x2
+
4
1+x4
分析:原式通分并利用同分母分式的加法法则计算即可得到结果.
解答:解:
1
1-x
+
1
1+x

=
1+x+1-x
1-x2

=
2
1-x2

原式=
2
1-x2
+
2
1+x2
+
4
1+x4

=
4
1-x4
+
4
1+x4

=
8
1-x8
点评:此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找最简公分母.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读,后解答:
3
3
-
2
=
3
(
3
+
2
)
(
3
-
2
)(
3
+
2
)
=
3+
6
(
3
)
2
-(
2
)
2
=3+
6

像上述解题过程中,
3
-
2
3
+
2
相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,
(1)
3
的有理化因式是
 
5
+2
的有理化因式是
 

(2)将下列式子进行分母有理化:①
2
5
=
 
;②
3
3+
6
=
 

(3)计算
1
1+
2
+
1
2
+
3
+…+
1
98
+
99
+
1
99
+
100

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读题:先观察下列等式,然后用你发现的规律解答下列问题.
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
2×4
=
1
2
1
2
-
1
4
1
4×6
=
1
2
(
1
4
-
1
6
)
1
6×8
=
1
2
(
1
6
-
1
8
)

┅┅
(1)计算
1
1×2
+
1
2×3
+
1
3×4
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
.(用含有n的式子表示)
(3)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值为
49
99
,求n的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:

先观察下列等式,然后用你发现的规律解答下列问题:
1
1×2
=
1
2
=
1
1
-
1
2
1
2×3
=
1
6
=
1
2
-
1
3
1
3×4
=
1
12
=
1
3
-
1
4

(1)计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
+
1
6×7
+
1
7×8
=
 
(n为正整数);
(2)化简:
1
x(x+1)
+
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+…+
1
(x+2008)(x+2009)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请先阅读下列一组内容,然后解答问题:
先观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
9×10
=
1
9
-
1
10

将以上等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
9
-
1
10
)
=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
9
-
1
10
=1-
1
10
=
9
10

然后用你发现的规律解答下列问题:
(1)猜想并写出:
1
n(n-1)
=
1
n-1
-
1
n
1
n-1
-
1
n

(2)直接写出下列各式的计算结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011
=
2010
2011
2010
2011

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1

(3)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2012×2014

查看答案和解析>>

同步练习册答案