分析 (1)由等腰直角三角形的性质得出∠ABC=∠ACB=∠E=45°,AC=AB=2,CE=$\sqrt{2}$CD=$\sqrt{2}$,得出CD=1,证出∠ACD=90°,即可得出△ACD的面积;
(2)由ASA证明△DEG≌△FBG,即可得出DG=FG;
(3)连接AF,由全等三角形的性质得出BF=DE=CD,证出∠ABF=∠ACD,由SAS证明△ACD≌△ABF,得出AF=AD,由等腰三角形的三线合一性质即可得出结论.
解答 (1)解:∵△ABC,△DCE为等腰直角三角形,
∴∠ABC=∠ACB=∠E=45°,AC=AB=2,CD=DE,CE=$\sqrt{2}$CD=$\sqrt{2}$,
∴CD=1,
∵∠ACD=180°-45°-45°=90°,
∴△ACD的面积=$\frac{1}{2}$AC×CD=$\frac{1}{2}$×2×1=1;
(2)证明:∵BF∥DE,
∴∠GBF=∠E=45°,
∵G为BE的中点,
∴BG=EG,
在△DEG和△FBG中,
$\left\{\begin{array}{l}{∠E=∠GBF}&{\;}\\{BG=EG}&{\;}\\{∠BGF=∠CGD}&{\;}\end{array}\right.$,
∴△DEG≌△FBG(ASA),
∴DG=FG;
(3)解:AG⊥FD,理由如下:![]()
连接AF,如图所示:
由(2)得:△DEG≌△FBG,
∴BF=DE=CD,
∵∠ABF=∠ABC+∠GBF=90°,
∴∠ABF=∠ACD,
在△ACD和△ABF中,
$\left\{\begin{array}{l}{AC=AB}&{\;}\\{∠ACD=∠ABF}&{\;}\\{CD=BF}&{\;}\end{array}\right.$,
∴△ACD≌△ABF(SAS),
∴AF=AD,
又∵DG=FG,
∴AG⊥FD.
点评 本题考查了全等三角形的判定与性质、等腰直角三角形的性质、平行线的性质;熟练掌握等腰直角三角形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 121(1+x)=100 | B. | 121(1-x)=100 | C. | 121(1-x)2=100 | D. | 100(1+x)2=121 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com