【题目】已知:如图(1),如果AB∥CD∥EF. 那么∠BAC+∠ACE+∠CEF=360°.
老师要求学生在完成这道教材上的题目后,尝试对图形进行变式,继续做拓展探究,看看有什么新发现?
(1)小华首先完成了对这道题的证明,在证明过程中她用到了平行线的一条性质,小华用到的平行线性质可能是______________.
(2)接下来,小华用《几何画板》对图形进行了变式,她先画了两条平行线AB,EF,然后在平行线间画了一点C,连接AC,EC后,用鼠标拖动点C,分别得到了图(2)(3)(4),小华发现图(3)正是上面题目的原型,于是她由上题的结论猜想到图(2)和(4)中的∠BAC,∠ACE与∠CEF之间也可能存在着某种数量关系.然后,她利用《几何画板》的度量与计算功能,找到了这三个角之间的数量关系.
请你在小华操作探究的基础上,继续完成下面的问题:
①猜想:图(2)中∠BAC,∠ACE与∠CEF之间的数量关系: .
②补全图(4),并直接写出图中∠BAC,∠ACE与∠CEF之间的数量关系: . (3)小华继续探究:如图(5),若直线AB与直线EF不平行,点G,H分别在直线AB、直线EF上,点C在两直线外,连接CG,CH,GH,且GH同时平分∠BGC和∠FHC,请探索∠AGC,∠GCH与∠CHE之间的数量关系?并说明理由.
【答案】(1)两直线平行,同旁内角互补.(2)①∠ACE=∠BAC+∠FEC.②∠ACE=∠FEC-∠BAC.(3)2∠GCH=∠AGC+∠CHE.
【解析】
(1)根据两直线平行同旁内角互补即可解决问题;
(2)①猜想∠ACE=∠BAC+∠FEC.过点C作CD∥AB.利用平行线的性质即可解决问题;
②∠BAC,∠ACE与∠CEF之间的数量关系是∠ACE=∠FEC-∠BAC.利用平行线的性质以及三角形的外角的性质即可解决问题;
(3)延长AB,EF,交于点P,依据∠CGP=180°-∠AGC,∠CHP=180°-∠CHE,即可得到∠CGP+∠CHP=360°-(∠AGC+∠CHE),再根据四边形内角和,即可得到四边形GCHP中,∠C+∠P=360°-(∠CGP+∠CH)=∠AGC+∠CHE,进而得出结论.
(1)如图,
∵AB∥CD∥EF
∴∠BAC+∠ACD=180°,(两直线平行,同旁内角互补)
∠DCE+∠CEF=180°,(两直线平行,同旁内角互补)
∴∠BAC+∠ACD+∠DCE+∠CEF=∠BAC+∠ACE+∠CEF=360°.
故答案为:两直线平行,同旁内角互补.
(2)①图(2)中∠BAC,∠ACE与∠CEF之间的数量关系:∠ACE=∠BAC+∠FEC.
证明:过点C作CD∥AB,如图,
∴∠BAC=∠ACD,
∵AB∥EF,
∴EF∥CD,
∴∠DCE=∠CEF
∴∠ACD+∠DCE=∠BAC+∠CEF,即∠ACE=∠BAC+∠FEC.
②连接AC,CE交AB于点D,如图,
∵AB∥EF
∴∠BDC=∠CEF,
∵∠BDC=∠BAC+∠ACE
∴∠CEF=∠BAC+∠ACE,即∠ACE=∠FEC-∠BAC.
(3) 延长AB,EF,交于点P,如图,
∵GH同时平分∠BGC和∠FHC,
∴∠CGH=∠BGH,∠CHG=∠FHG,
∴∠C=∠P,
∵∠CGP=180°-∠AGC,∠CHP=180°-∠CHE,
∴∠CGP+∠CHP=360°-(∠AGC+∠CHE),
∵四边形GCHP中,∠C+∠P=360°-(∠CGP+∠CH)=360°-[360°-(∠AGC+∠CHE)]= ∠AGC+∠CHE,
即2∠GCH=∠AGC+∠CHE.
科目:初中数学 来源: 题型:
【题目】二次函数y= ax+bx+c,自变量x 与函数y 的对应值如表:
x | ... | -5 | -4 | -3 | -2 | -1 | 0 | ... |
y | ... | 4 | 0 | -2 | -2 | 0 | 4 | ... |
下列说法正确的是( )
A. 抛物线的开口向下 B. 当x>-3时,y随x的增大而增大
C. 二次函数的最小值是-2 D. 抛物线的对称轴是x=-5/2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=ax+b(a、b是常数,a≠0)函数图象经过(﹣1,4),(2,﹣2)两点,下面说法中:(1)a=2,b=2;(2)函数图象经过(1,0);(3)不等式ax+b>0的解集是x<1;(4)不等式ax+b<0的解集是x<1;正确的说法有____________________.(请写出所有正确说法的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,G是边长为8的正方形ABCD的边BC上的一点,矩形DEFG的边EF过点A,GD=10.
(1)求FG的长;
(2)直接写出图中与△BHG相似的所有三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:
(1)这次活动一共调查了 名学生;
(2)补全条形统计图;
(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于 度;
(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 人。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板按如图放置,小明得到下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=30°;④如果∠CAD=150°,则∠4=∠C;那么其中正确的结论有________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac-b2<16a;④<a<;⑤b>c.其中正确结论个数( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,且抛物线的对称轴为直线x=4.
(1)求出抛物线与x轴的两个交点A,B的坐标.
(2)试确定抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.
(1)求证:△ABE≌△CDF;
(2)若AB=DB,猜想:四边形DFBE是什么特殊的四边形?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com