精英家教网 > 初中数学 > 题目详情
19.如图,在△ABC中,∠CAB=65°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为(  )
A.50°B.40°C.35°D.30°

分析 根据旋转的性质得AC=AE,∠BAD=∠CAE,再利用等腰三角形的性质得∠ACE=∠AEC,接着根据平行线的性质由EC∥AB得到∠ACE=∠CAB=65°,则可根据三角形内角和定理计算出∠CAE=50°,从而得到∠BAD=50°.

解答 解:∵△ABC绕点A逆时针旋转到△ADE的位置,
∴AC=AE,∠BAD=∠CAE,
∴∠ACE=∠AEC,
∵EC∥AB,
∴∠ACE=∠CAB=65°,
∴∠CAE=180°-65°-65°=50°,
∴∠BAD=50°.
故选A.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键是判断△PCE为等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.计算:
(1)$\frac{{{m^2}-4m}}{{16-{m^2}}}$
(2)$\frac{a}{a-1}÷\frac{{{a^2}-a}}{{{a^2}-1}}-\frac{1}{a+1}$
(3)$\frac{1}{{{a^2}-{b^2}}}÷(\frac{1}{a+b}-\frac{1}{a-b})$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知点(-2,2)在二次函数y=ax2上,那么a的值是(  )
A.1B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列各选项的两个图形(实线部分),不属于位似图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品价格的概率(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
①(-$\frac{2}{3}$)×$\frac{1}{4}$-|-4|3÷(-2)4
②25×$\frac{3}{4}$-(-25)×$\frac{1}{2}$+(-$\frac{1}{4}$)×25.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,所以企业规定销售单价不得高于100元,但又不能低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并写出自变量的取值范围;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,四边形ABCD沿直线l对折后重合,如果AD∥BC,则结论①AB∥CD;②AB=CD;③AC⊥BD;④AO=CO中正确的是(  )
A.①②③④B.①③④C.②③④D.③④

查看答案和解析>>

同步练习册答案