精英家教网 > 初中数学 > 题目详情

【题目】如图,在长方形中,,点上一点,将沿折叠,使点落在点处,连接,当为直角三角形时,的长为__________

【答案】8

【解析】

分两种情况讨论:①当∠EFC90°时,可知点F在对角线AC上,利用勾股定理求出AC,结合AF=AB=5可得答案;当∠FEC90°时,易得四边形ABEF是正方形,求出CE,利用勾股定理计算即可.

解:当CEF为直角三角形时,有两种情况:

①当∠EFC90°时,如图1所示,连结AC

∵△ABE沿AE折叠,使点B落在点F处,

∴∠AFE=∠B90°

∴点F在对角线AC上,

RtABC中,AB5BCAD12

AC13

由折叠可得:AF=AB=5

CF=13-5=8

②当∠FEC90°时,如图2所示,点FAD上,

易得四边形ABEF是正方形,

AB=BE=EF=5

EC=12-5=7

CF

综上所述,CF的长为8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点M为抛物线x轴的焦点为A(-3,0),B(1,0),与y轴交于点C,连结AM,AC,点D为线段AM上一动点(不与A重合),以CD为斜边在CD上侧作等腰RtDEC,连结AE,OE.

(1)求抛物线的解析式及顶点M的坐标;

(2)求解AD:OE的值;

(3)当OEC为直角三角形时,求AD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线ABDFD+B=180°

1)求证:DEBC

2)如果∠AMD=75°,求∠AGC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ABC=∠ACBBDCDBE分别平分ABC的内角∠ABC、外角∠ACP、外角∠MBC,以下结论:①ADBC;②DBBE;③∠BDC+ABC90°;④∠A+2BEC180°.其中正确的结论有_____.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的图象如图所示,给出以下结论:;②;③;④.其中所有正确结论的序号是(

A. ③④ B. ②③ C. ①④ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.

1)当售价为22万元/辆时,求平均每周的销售利润.

2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示△ABC,AB=AC,AD⊥BC,点E、F分别是AB、AC的中点.

(1)求证:四边形AEDF是菱形;

(2)若四边形AEDF的周长为12,两条对角线的和等于7,四边形AEDF的面积记为S1,三 角形ABC的面积记为S2,S1与S2有何数量关系_____.(直接填答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,RtABC的直角边ACx轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1).

(1)求这个反比例函数的表达式;

(2)若ABCEFG成中心对称,且EFG的边FGy轴的正半轴上,点E在这个函数的图象上.

①求OF的长;

②连接AF,BE,证明四边形ABEF是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点DE分别在边BCAC上,DEAB,过点EEFDE,交BC的延长线于点F

1)求∠F的度数;

2)若CD4,求EF的长.

查看答案和解析>>

同步练习册答案