精英家教网 > 初中数学 > 题目详情
如图,在矩形OABC中,OA=8,OC=4,OA、OC分别在x轴与y轴上,D为OA上一点,且CD=AD.

(1)求点D的坐标;
(2)若经过B、C、D三点的抛物线与x轴的另一个交点为E,请直接写出点E的坐标;
(3)在(2)中的抛物线上位于x轴上方的部分,是否存在一点P,使△PBC的面积等于梯形DCBE的面积?若存在,求出点P的坐标,若不存在,请说明理由.
(1)D(3,0);(2)E(5,0);(3)不存在

试题分析:(1)设OD=x,则AD=CD=8-x ,在Rt△OCD中,根据勾股定理即可列方程求解;
(2)由题意知,抛物线的对称轴为直线x=4,根据抛物线的对称性即可求得结果;
(3)若存在这样的P,则由S梯形=20得S△PBC·BC·h=20可求得h=5,根据待定系数法求得抛物线函数关系式,从而得到顶点坐标,即可得到顶点到BC的距离为4+<5,即可作出判断.
(1)设OD=x,则AD=CD=8-x
Rt△OCD中,(8-x)2=x2+42,得x=3    
∴OD=3
∴D(3,0)    
(2)由题意知,抛物线的对称轴为直线x=4     
∵D(3,0), ∴另一交点E(5,0)
(3)若存在这样的P,则由S梯形=20得S△PBC·BC·h=20.
∴h=5
∵B(8,-4), C(0,-4), D(3,0)
∴该抛物线函数关系式为:y=-x2x-4. 
顶点坐标为(4,
∴顶点到BC的距离为4+<5      
∴不存在这样的点P, 使得△PBC的面积等于梯形DCBE的面积.
点评:本题知识点多,综合性强,难度较大,一般是中考压轴题,主要考查学生对二次函数的熟练掌握情况.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线C1的顶点为P, 与x轴相交于AB两点(点A在点B的左侧),点B 的横坐标是1.

(1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物 线C2向右平移,平移后的抛物线记为C3,抛物线
C的顶点为M,当点PM关于点O成中心对称时,求抛物线C3的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分12分,其中第(1)小题5分,第(2)小题4分,第(3)小题3分)
已知抛物线过点A(-1,0),B(4,0),P(5,3),抛物线与y轴交于点C

(1)求二次函数的解析式;
(2)求tanAPC的值;
(3)在抛物线上求一点Q,过Q点作x轴的垂线,垂足为H,使得∠BQH=∠APC

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线
(1)用配方法将化成的形式;
(2)将此抛物线向右平移1个单位,再向上平移2个单位,求平移后所得抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,二次函数的图象为抛物线,交x轴于A、B两点,交y轴于C点.其中AC=,BC=
(1)求二次函数的解析式;
(2)若P点为抛物线上一动点且在x轴下方运动,当以P为圆心,1为半径的⊙P与直线BC相切时,求出符合条件的P点横坐标;
(3)如图2,若点E从点A出发,以每秒3个单位的速度沿着AB向点B匀速运动,点F从点A出发,以每秒个单位的速度沿着AC向点C匀速运动.两点同时出发,当其中一点到达终点时,另一点也随之停止运动.过点E作AB的垂线交抛物线于点E′,作点F关于直线的对称点F′.设点E的运动时间为t(s),点F′ 能恰好在抛物线吗?若能,请直接写出t的值;若不能,请说明理由.
    
图1                       图2                     

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数的对称轴为,则        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知,二次函数f(x)=ax2+bx+c的部分对应值如下表,则f(-3)=    
x
-2
-1
0
1
2
3
4
5
y
5
0
-3
-4
-3
0
5
12

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)用因式分解法解方程 x(x+1) =2(x+1) .
(2)已知二次函数的解析式为y=x2-4x-5,请你判断此二次函数的图象与x轴交点的个数;并指出当y随x的增大而增大时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线向右平移1个单位后,得到的抛物线的解析式是    

查看答案和解析>>

同步练习册答案