【题目】将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.
(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数。
(2)如图(2)若∠AOC=140°,求∠BOD的度数
(3)猜想∠AOC与∠BOD的大小关系,并结合图(1)说明理由.
(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由
【答案】
(1)解:若∠BOD=35°,∵∠AOB=∠COD=90°,
∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,
若∠AOC=135°,
则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°
(2)解:如图2,若∠AOC=140°,
则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°
(3)解:∠AOC与∠BOD互补.
∵∠AOD+∠BOD+∠BOD+∠BOC=180°.
∵∠AOD+∠BOD+∠BOC=∠AOC,
∴∠AOC+∠BOD=180°,
即∠ACB与∠DCE互补.
(4)解:OD⊥AB时,∠AOD=30°CD⊥OB时,∠AOD=45°,
CD⊥AB时,∠AOD=75°
OC⊥AB时,∠AOD=60
即∠AOD角度所有可能的值为30°、45°、60°、75°
【解析】(1)抓住已知△ABO和△DCO都是直角三角形,方法一:根据∠AOC=∠AOB+∠COD﹣∠BOD,计算即可求出∠AOC的度数,方法二:根据∠BOC=∠DOC-∠BOD,再根据∠AOC=∠BOC+∠AOB,计算即可得出∠AOC的度数;若∠AOC=135°,方法一:根据∠BOD=∠AOB+∠COD﹣∠AOC,计算即可得出答案;方法二:根据∠AOD=∠AOC-∠DOC,再根据∠BOD=∠AOB-AOD,计算即可得出答案。
(2)观察图(2)可得出∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD,即∠AOC与∠BOD互补,计算即可。
(3)根据已知结合图形易证∠ACB与∠DCE互补。
(4)分别根据OD⊥AB时、CD⊥OB时、CD⊥AB时、OC⊥AB时分别求出∠AOD的度数即可。
科目:初中数学 来源: 题型:
【题目】如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°. 因城市规划的需要,将在A、B两地之间修建一条笔直的公路.
(1)求改直后的公路AB的长;
(2)问公路改直后该段路程比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一个正比例函数的图象经过不同象限的两点A(3,m),B(n,2),那么一定有( )
A.m>0,n>0B.m<0,n<0C.m>0,n<0D.m<0,n>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.
(1)若∠B=70°,则∠NMA的度数是 .
(2)连接MB,若AB=8cm,△MBC的周长是14cm.
①求BC的长;
②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在图中作出△ABC关于x轴的对称图形△A1B1C1 .
(2)写出点A1 , B1 , C1的坐标(直接写答案)
A1
B1
C1
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB∥CD,直线l与直线AB、CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.
(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.
(2)若∠PEF=75°,∠CFQ= ∠PFC,求∠EFP的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com