精英家教网 > 初中数学 > 题目详情

【题目】如图1,直线AB∥CD,直线l与直线AB、CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.

(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.
(2)若∠PEF=75°,∠CFQ= ∠PFC,求∠EFP的度数.

【答案】
(1)解:
(2)解:如图1,

当点 在平行线 之间时:
的度数为 ,由折叠可得:


,


解得:
即:
ⅱ如图2,

当点 的下方时,

得:

由折叠得


解得:

综上: 的度数为
【解析】(1)根据平行线的性质直接求出∠EFP的度数;(2)当点Q在平行线AB,CD之间时和当点Q在CD的下方时,由折叠的性质和平行线的性质,求出∠EFP的度数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.

(1)求证:1=2;

(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、CD交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.

(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数。
(2)如图(2)若∠AOC=140°,求∠BOD的度数
(3)猜想∠AOC与∠BOD的大小关系,并结合图(1)说明理由.
(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.

(1)若∠B=70°,则∠NMA的度数是
(2)连接MB,若AB=8cm,△MBC的周长是14cm.
①求BC的长;
②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x-y=3,x2-y2=12,那么x+y的值是( )

A. 3 B. 4 C. 6 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,AB=AC,BD,CE是角平分线,图中的等腰三角形共有(

A.6个
B.5个
C.4个
D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长的关系是___________

查看答案和解析>>

同步练习册答案