精英家教网 > 初中数学 > 题目详情

【题目】如图,AB、CD交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.

【答案】解:∵平分∠BOD, ∴∠1=∠2,
∵∠3:∠1=8:1,
∴∠3=8∠1.
∵∠1+∠2+∠3=180°,
∴∠1+∠1+8∠1=180°,
解得∠1=18°,
∴∠4=∠1+∠2=36°
【解析】根据角平分线的定义得∠1=∠2,由∠3:∠1=8:1得∠3=8∠1.根据平角的定义有∠1+∠2+∠3=180°,则∠1+∠1+8∠1=180°,可解得出∠1=18°,而根据对顶角相等有∠4=∠1+∠2,然后把∠1、∠2的度数代入计算即可.
【考点精析】解答此题的关键在于理解对顶角和邻补角的相关知识,掌握两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】魔术师为大家表演魔术.他请观众想一个数,然后将这个数按以下步骤操作:

魔术师立刻说出观众想的那个数.
(1)如果小明想的数是﹣1,那么他告诉魔术师的结果应该是
(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是
(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个角的余角的3倍比它的补角的2倍少120°,则这个角的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°. 因城市规划的需要,将在A、B两地之间修建一条笔直的公路.

(1)求改直后的公路AB的长;

(2)问公路改直后该段路程比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2

①在直线l上任取两点A,B;
②分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;
③作直线PQ. 所以直线PQ就是所求的垂线.
请回答:该作图的依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个正比例函数的图象经过不同象限的两点A3m),Bn2),那么一定有(  )

A.m0n0B.m0n0C.m0n0D.m0n0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.

(1)若∠B=70°,则∠NMA的度数是
(2)连接MB,若AB=8cm,△MBC的周长是14cm.
①求BC的长;
②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线AB∥CD,直线l与直线AB、CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.

(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.
(2)若∠PEF=75°,∠CFQ= ∠PFC,求∠EFP的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,则∠C=

查看答案和解析>>

同步练习册答案