已知:r如图,在梯形ABCD中,AD∥BC,∠BCD=90°.对角线AC、BD相交于点E。且AC⊥BD。(1)求证:CD²=BC·AD;(2)点F是边BC上一点,连接AF,与BD相交于点G,如果∠BAF=∠DBF,求证:。
见解答过程.
解析试题分析:(1)首先根据已知得出∠ACD=∠CBD,以及∠ADC=∠BCD=90°,进而求出△ACD∽△DBC,即可得出答案;
(2)首先证明△ABG∽△DBA,进而得出AG:AD=AB:BD,再利用△ABG∽△DBA,得出BG:AB="AB:BD" ,则AB2=BG•BD,进而得出答案.
试题解析:证明:(1)∵AD∥BC,∠BCD=90°,
∴∠ADC=∠BCD=90°,
又∵AC⊥BD,∴∠ACD+∠ACB=∠CBD+∠ACB=90°,
∴∠ACD=∠CBD,
∴△ACD∽△DBC,
∴AD CD ="CD" BC ,
即CD2=BC×AD;
(2)∵AD∥BC,∴∠ADB=∠DBF,
∵∠BAF=∠DBF,∴∠ADB=∠BAF,
∵∠ABG=∠DBA,∴△ABG∽△DBA,
∴S△ABG:S△DBA =()2=AG2:AD2,
而S△ABG:S△DBA="BG:BD" ,∴AG2:AD2 ="BG:BD" .
考点:相似三角形的判定与性质.
科目:初中数学 来源: 题型:解答题
已知:如图ΔABC中,D、E、F分别是AB、AC、BC的中点.
(1)若AB=10cm,AC=6cm,则四边形ADFE的周长为______cm
(2)若ΔABC周长为6cm,面积为12cm2,则ΔDEF的周长是 _____,面积是_____
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在Rt△ABC中,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,
且DM⊥DN,作MF⊥AB于点F,NE⊥AB于点E。
(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC。
①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;
②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在□ABCD中,AB=4,AD=6,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=.
(1)求AE的长; (2)求ΔCEF的周长和面积.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2),(正方形网格中,每个小正方形的边长是1个单位长度)
(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;
(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2∶1,并直接写出C2点的坐标及△A2BC2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).
(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,A(-1,1),B(-2,-1).(1)以原点O为位似中心,把线段AB放大到原来的2倍,请在图中画出放大后的线段CD;(2)在(1)的条件下,写出点A的对应点C的坐标为 ,点B的对应点D的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(1)如图1,在等边△ABC中,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等边△AMN,联结CN.求证:∠ABC=∠ACN.
【类比探究】
(2)如图2,在等边△ABC中,点M是边BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.
【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,点M是边BC上的任意一点(不含端点B、C),联结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.联结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com