精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,A(-1,1),B(-2,-1).(1)以原点O为位似中心,把线段AB放大到原来的2倍,请在图中画出放大后的线段CD;(2)在(1)的条件下,写出点A的对应点C的坐标为                                ,点B的对应点D的坐标为               

(1)画图见解析;(2)(-2,2)或(2,-2),(-4,-2)或(4,2).

解析试题分析:(1)利用位似图形的性质得出原点两侧各有一个图形,进而得出答案;
(2)利用所画图形得出对应点坐标即可.
试题解析:(1)如图所示:

(2)点A的对应点C的坐标为(-2,2)或(2,-2),点B的对应点D的坐标为(-4,-2)或(4,2).
故答案为:(-2,2)或(2,-2),(-4,-2)或(4,2).
考点: 作图-位似变换

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.
(1)求证:FB为⊙O的切线;
(2)若AB=8,CE=2,求sin∠F.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.
(1)如图1,当点M在BC上时,求证:BD-2DE=BM;
(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是        
(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G.若DE=,且AF:FD=1:2时,求线段DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:r如图,在梯形ABCD中,AD∥BC,∠BCD=90°.对角线AC、BD相交于点E。且AC⊥BD。(1)求证:CD²=BC·AD;(2)点F是边BC上一点,连接AF,与BD相交于点G,如果∠BAF=∠DBF,求证:

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,梯形中,,点上,连接并延长与的延长线交于点

(1)求证:△∽△
(2)当点的中点时,过点于点,若,求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,△ABC在坐标平面内三个顶点的坐标分别为A(1,2)、B(3,3)、C(3,1).

(1)根据题意,请你在图中画出△ABC;
(2)在原图中,以B为位似中心,画出△A′BC′使它与△ABC位似且位似比是3:1,并写出顶点A′和C′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在直角梯形OABC中,OA∥BC,A、B两点的坐标分别为A(13,0),B(11,12),动点P,Q分别从O、B两点同时出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,设动点P、Q运动时间为t(单位:s)

(1)当t为何值时,四边形PABQ是平行四边形,请写出推理过程;
(2)通过推理论证:在P、Q的运动过程中,线段DE的长度不变;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从A、B两点出发,分别沿AB,BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),

解答下列问题:
(1)当为何值时,△BPQ为直角三角形;
(2)设△BPQ的面积为S(cm2),求S与的函数关系式;
(3)作QR∥BA交AC于点R,连结PR,当为何值时,△APR∽△PRQ ?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平行四边形中,为边延长线上的一点,且的黄金分割点,即于点,已知,求的长.

查看答案和解析>>

同步练习册答案