精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则下列四个结论:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中结论正确的序号为(

A.①②③
B.①②④
C.②③④
D.①②③④

【答案】D
【解析】解:∵PR⊥AB,PS⊥AC,PR=PS,
∴点P在∠A的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2 , AS2=AP2﹣PS2
∵AP=AP,PR=PS,
∴AR=AS,∴②正确;
∵AQ=QP,
∴∠QAP=∠QPA,
∵∠QAP=∠BAP,
∴∠QPA=∠BAP,
∴QP∥AR,∴③正确;
∵△ABC是等边三角形,
∴∠B=∠CAB=60°,AB=AC,
∵∠QAP=∠BAP,
∴BP=CP,
∵QP∥AB,
∴∠QPC=∠B=60°=∠C,
∴PQ=CQ,
∴△PQC是等边三角形,
∴PQ=CP=BP,∠SQP=60°=∠B,
∵PR⊥AB,PS⊥AC,
∴∠BRP=∠PSQ=90°,
在△BRP和△QSP中,

∴△BRP≌△QSP,∴④正确;
连接RS,

∵PR=PS,
∴点P在RS的垂直平分线上,
∵AS=AR,
∴点A在RS的垂直平分线上,
∴AP垂直平分RS,∴①正确.
所以答案是:D.
【考点精析】利用角平分线的性质定理对题目进行判断即可得到答案,需要熟知定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,DE⊥AB,DF⊥AC,AE=AF,则下列结论成立的是(

A.BD=CD
B.DE=DF
C.∠B=∠C
D.AB=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若﹣2x2my3与2x4yn的和是单项式,那么m﹣n等于( )
A.0
B.1
C.﹣1
D.﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有(

A.2对
B.3对
C.4对
D.5对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果a、b互为倒数,c、d互为相反数,且|m|=1,则代数式2ab﹣(c+d)+m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.

(1)根据题意,袋中有 个蓝球.

(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=(x+2)2+1的顶点坐标是( )
A.(2,1)
B.(2,﹣1)
C.(﹣2,1)
D.(﹣2,﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠A为锐角,且tan35°cotA=1,则∠A=________度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个整式减去a2﹣b2后所得的结果是﹣a2﹣b2 , 则这个整式是

查看答案和解析>>

同步练习册答案