精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,已知三点A(0,a),B(b,0),C(b,c),其中a,b,c满足关系式|a-2|+(b-3)2=0,c=2b-a;
(1)求a,b,c的值.
(2)如果在第二象限内有一点P(m,1),请用含m的式子表示四边形ABOP的面积;若四边形ABOP的面积与△ABC的面积相等,请求出点P的坐标;
附加题:
(3)若B,A两点分别在x轴,y轴的正半轴上运动,设∠BAO的邻补角的平分线和∠ABO的邻补角的平分线相交于第一象限内一点Q,那么,点A,B在运动的过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.
(4)是否存在一点N(n,-1),使AN+NC距离最短?如果有,请求出该点坐标,如果没有,请说明理由.
(1)∵|a-2|+(b-3)2=0,
∴a-2=0,b-3=0,
解得a=2,b=3.
将a=2,b=3代入c=2b-a,得
c=2×3-2=4.
故a=2,b=3,c=4;

(2)如图.如果在第二象限内有一点P(m,1),
那么四边形ABOP的面积=△AOP的面积+△AOB的面积
=
1
2
×2×(-m)+
1
2
×3×2
=3-m;
∵△ABC的面积=
1
2
×4×3=6,
∴3-m=6,解得m=-3,
∴点P的坐标(-3,1);

附加题:
(3)如图.∠AQB的大小不会发生变化,理由如下:
∵∠BAO的邻补角的平分线和∠ABO的邻补角的平分线相交于第一象限内一点Q,
∴∠1=
1
2
∠DAB,∠2=
1
2
∠ABE,
∴∠AQB=180°-(∠1+∠2)
=180°-
1
2
(∠DAB+∠ABE)
=180°-
1
2
(90°+∠ABO+90°+∠BAO)
=180°-
1
2
(90°+90°+90°)
=45°.
∴∠AQB的大小不会发生变化;

(4)存在一点N(
9
8
,-1),使AN+NC距离最短.理由如下:
如图,作出点A(0,2)关于直线y=-1的对称点A′(0,-4),连接A′C,交直线y=-1于点N,则AN+NC距离最短.
设直线A′C的解析式为y=kx+t,
将点A′(0,-4),C(3,4)代入,
t=-4
3k+t=4

解得
k=
8
3
t=-4

所以直线A′C的解析式为y=
8
3
x-4,
当y=-1时,
8
3
x-4=-1,
解得x=
9
8

即点N的坐标为(
9
8
,-1).
故存在一点N(
9
8
,-1),使AN+NC距离最短.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

折叠矩形纸片ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,
(1)求BF的长;
(2)求折痕AE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形OABC的边长为2,
(1)写出A、B、C、三点的坐标;
(2)画出与正方形OABC关于x轴成轴对称的图形O1A1B1C1,并写出点B1,C1的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,则CE=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,AB=3,BC=4,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为(  )
A.
3
2
B.2C.
5
2
D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,把矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,若CD=6,则AF=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,A(3,4),B(1,2),C(5,1);
(1)在图中作出△ABC关于y轴的对称图形△A1B1C1
(2)写出点A1,B1,C1的坐标(直接写答案)
A1______
B1______
C1______.
(3)在图中作出△ABC关于x轴的对称图形△DEF.
(4)写出点D,E,F的坐标:D______,E______,F______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

电子钟镜子里的像如图所示,实际时间是(  )
A.21:10B.10:21C.10:51D.12:01

查看答案和解析>>

同步练习册答案