【题目】我市绿化部门决定利用现有的不同种类花卉搭配园艺造型,摆放于城区主要大道的两侧.A、B两种园艺造型均需用到杜鹃花,A种造型每个需用杜鹃花25盆,B种造型每个需用杜鹃花35盆,解答下列问题:
(1)已知人民大道两侧搭配的A、B两种园艺造型共60个,恰好用了1700盆杜鹃花,A、B两种园艺造型各搭配了多少个?
(2)如果搭配一个A种造型的成本W与造型个数的关系式为:W=100―x (0<x<50),搭配一个B种造型的成本为80元.现在观海大道两侧也需搭配A、B两种园艺造型共50个,要求每种园艺造型不得少于20个,并且成本总额y(元)控制在4500元以内. 以上要求能否同时满足?请你通过计算说明理由.
【答案】(1) A种园艺造型搭配了40个,B种园艺造型搭配了20个;(2) 当时,的最大值为,4500,所以能同时满足题设要求.
【解析】分析:(1)、设A种园艺造型搭配了x个,则B种园艺造型搭配了(60﹣x)个,根据题意列出方程从而得出x的值;(2)、设A种园艺造型搭配了x个,则B种园艺造型搭配了(50﹣x)个,根据题意得出y与x的函数关系式,得出最大值,从而可以判断是否正确.
详解:(1)设A种园艺造型搭配了x个,则B种园艺造型搭配了(60﹣x)个,
25x+35(60﹣x)=1700, 解得,x=40,60﹣x=20,
答:A种园艺造型搭配了40个,B种园艺造型搭配了20个;
(2)能同时满足题设要求,
理由:设A种园艺造型搭配了x个,则B种园艺造型搭配了(50﹣x)个,
成本总额y与A种园艺造型个数想x的函数关系式为:y=x(100﹣)+80(50﹣x)=﹣+20x+4000=,
∵x≥20,50﹣x≥20, ∴20≤x≤30, ∴当x=20时,y取得最大值,此时y=4200,
∵4200<4500, ∴能同时满足题设要求.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(a ,2)是直线y=x上一点,以A为圆心,2为半径作⊙A,若P(x,y)是第一象限内⊙A上任意一点,则的最小值为( )
A. 1 B. C. —1 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是由若干个完全相同的小正方体组成的一个几何体。
(1)图中有 块小正方体;
(2)请画出这个几何体的左视图和俯视图;(用阴影表示)
(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设直线y=kx+6和直线y=(k+1)x+6(k是正整数)及x轴围成的三角形面积为Sk(k=1,2,3,…,8),则S1+S2+S3+…+S8的值是( )
A. B. C. 16D. 14
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人利用不同的交通工具,沿同一路线分别从A、B两地同时出发匀速前往C地(B在A、C两地的途中).设甲、乙两车距A地的路程分别为y甲、y乙(千米),行驶的时间为x(小时),y甲、y乙与x之间的函数图象如图所示.
(1)直接写出y甲、y乙与x之间的函数表达式;
(2)如图,过点(1,0)作x轴的垂线,分别交y甲、y乙的图象于点M,N.求线段MN的长,并解释线段MN的实际意义;
(3)在乙行驶的过程中,当甲、乙两人距A地的路程差小于30千米时,求x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,=60°, AB=2,点E是AB上的动点,作∠EDQ=60°交BC于点Q,点P在AD上,PD=PE.
(1)求证:AE=BQ;
(2)连接PQ, EQ,当∠PEQ=90°时,求的值;
(3)当AE为何值时,△PEQ是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某自行车厂一周计划生产150辆自行车,平均每天生产辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正、减产为负):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 |
(1)根据记录可知前三天共生产 辆;
(2)产量最多的一天比生产量最少的一天多生产 辆;
(3)该厂实行计划工资制,每辆车元,超额完成任务每辆奖元,少生产一辆扣元,那么该厂工人这一周的工资总额是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上任意两点之间的距离均可用“右﹣左”表示,即右边的数(较大)减去左边的数(较小).已知数轴上两点A、B对应的数分别为﹣2、5,则A、B两点之间的距离记为AB,且AB=5﹣(﹣2)=7.P为数轴上的动点,其对应的数为x.
(1)若点P到A,B两点的距离相等,写出点P对应的数;
(2)数轴上是否存在点P,使点P到A,B两点的距离之和为11,若存在,请求出x的值;若不存在,请说明理由;
(3)若点P在原点,现在A,B,P三个点均向左匀速运动,其中点P的速度为每秒1个单位;A,B两点中有一个点速度与点P的速度一致,另一个点以每秒3单位的速度运动;则几秒后点P到A,B两点的距离相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请根据图中提供的信息,回答下列问题:
(1)一个水瓶与一个水杯分别是多少元?
(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com