【题目】如图,1,将一张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点.
(1)求证:是等腰三角形;
(2)如图2,过点作,交于点,连结交于点.
①判断四边形的形状,并说明理由;
②若,,求的长.
【答案】(1)证明见解析;(2) .
【解析】
试题分析: (1)根据两直线平行内错角相等及折叠特性判断;
(2)①根据已知矩形性质及第一问证得邻边相等判断;
②根据折叠特性设未知边,构造勾股定理列方程求解.
试题解析:(1)证明:如图1,根据折叠,∠DBC=∠DBE,
又AD∥BC,
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,
∴DF=BF,
∴△BDF是等腰三角形;
(2)①∵四边形ABCD是矩形,
∴AD∥BC,
∴FD∥BG,
又∵FD∥BG,
∴四边形BFDG是平行四边形,
∵DF=BF,
∴四边形BFDG是菱形;
②∵AB=6,AD=8,
∴BD=10.
∴OB=BD=5.
假设DF=BF=x,∴AF=AD﹣DF=8﹣x.
∴在直角△ABF中,AB2+A2=BF2,即62+(8﹣x)2=x2,
解得x=,
即BF=,
∴FO==,
∴FG=2FO=.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与直线交于,两点,直线交轴与点,点是直线上的动点,过点作轴交于点,交抛物线于点.
(1)求抛物线的表达式;
(2)连接,,当四边形是平行四边形时,求点的坐标;
(3)①在轴上存在一点,连接,,当点运动到什么位置时,以为顶点的四边形是矩形?求出此时点的坐标;
②在①的前提下,以点为圆心,长为半径作圆,点为上一动点,求的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学课上,同学们已经探究过“经过已知直线外一点作这条直线的垂线”的尺规作图过程:
已知:直线和外一点 求作:直线的垂线,使它经过点. 做法:如图:(1)在直线上任取两点、; (2)分别以点、为圆心,,长为半径画弧,两弧相交于点; (3)作直线. |
参考以上材料作图的方法,解决以下问题:
(1)以上材料作图的依据是 .
(3)已知:直线和外一点,
求作:,使它与直线相切。(尺规作图,不写做法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象与轴交于点,点,与轴交于点.
(1)求二次函数的表达式;
(2)连接,若点在线段上运动(不与点重合),过点作,交于点,当面积最大时,求N点的坐标;
(3)连接,在(2)的结论下,求与的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.
(1)求二次函数y=ax2+bx+4的表达式;
(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;
(3)连接OM,在(2)的结论下,求OM与AC的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com