【题目】如图,抛物线与直线交于,两点,直线交轴与点,点是直线上的动点,过点作轴交于点,交抛物线于点.
(1)求抛物线的表达式;
(2)连接,,当四边形是平行四边形时,求点的坐标;
(3)①在轴上存在一点,连接,,当点运动到什么位置时,以为顶点的四边形是矩形?求出此时点的坐标;
②在①的前提下,以点为圆心,长为半径作圆,点为上一动点,求的最小值.
【答案】(1) y=﹣x2﹣2x+4;(2) G(﹣2,4);(3)①E(﹣2,0).H(0,﹣1);②.
【解析】
试题分析: (1)利用待定系数法求出抛物线解析式;
(2)先利用待定系数法求出直线AB的解析式,进而利用平行四边形的对边相等建立方程求解即可;
(3)①先判断出要以点A,E,F,H为顶点的四边形是矩形,只有EF为对角线,利用中点坐标公式建立方程即可;
②先取EG的中点P进而判断出△PEM∽△MEA即可得出PM=AM,连接CP交圆E于M,再求出点P的坐标即可得出结论.
试题解析:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,
∴,
∴,
∴抛物线的解析式为y=﹣x2﹣2x+4;
(2)设直线AB的解析式为y=kx+n过点A,B,
∴ ,
∴,
∴直线AB的解析式为y=2x+4,
设E(m,2m+4),
∴G(m,﹣m2﹣2m+4),
∵四边形GEOB是平行四边形,
∴EG=OB=4,
∴﹣m2﹣2m+4﹣2m﹣4=4,
∴m=﹣2,
∴G(﹣2,4);
(3)①如图1,
由(2)知,直线AB的解析式为y=2x+4,
∴设E(a,2a+4),
∵直线AC:y=﹣x﹣6,
∴F(a,﹣a﹣6),
设H(0,p),
∵以点A,E,F,H为顶点的四边形是矩形,
∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,
∴AB⊥AC,
∴EF为对角线,
∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),
∴a=﹣2,P=﹣1,
∴E(﹣2,0).H(0,﹣1);
②如图2,
由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),
∴EH=,AE=2,
设AE交⊙E于G,取EG的中点P,
∴PE=,
连接PC交⊙E于M,连接EM,
∴EM=EH=,
∴=,
∵=,
∴,
∵∠PEM=∠MEA,
∴△PEM∽△MEA,
∴,
∴PM=AM,
∴AM+CM的最小值=PC,
设点P(p,2p+4),
∵E(﹣2,0),
∴PE2=(p+2)2+(2p+4)2=5(p+2)2,
∵PE=,
∴5(p+2)2=,
∴p=﹣或p=﹣(由于E(﹣2,0),所以舍去),
∴P(﹣,﹣1),
∵C(0,﹣6),
∴PC=,
即:AM+CM=.
科目:初中数学 来源: 题型:
【题目】A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,1,将一张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点.
(1)求证:是等腰三角形;
(2)如图2,过点作,交于点,连结交于点.
①判断四边形的形状,并说明理由;
②若,,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com