精英家教网 > 初中数学 > 题目详情

【题目】如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?

【答案】解:过C点作CG⊥AB于点G,

∴GC=BD=3米,GB=CD=2米.

∵∠NMF=∠AGC=90°,NF∥AC,

∴∠NFM=∠ACG,

∴△NMF∽△AGC,

∴AG= = =6,

∴AB=AG+GB=6+2=8(米),故电线杆子的高为8米.


【解析】把直角梯形ABCD分割成一个直角三角形和一个矩形,由于太阳光线是平行的,就可以构造出相似三角形了.
【考点精析】通过灵活运用相似三角形的应用,掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算题:

1)(﹣8+3+10+(﹣2

2)(﹣2×(﹣6÷(﹣

3)(﹣1100×2+(﹣23÷4

42a3b+32b3a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据,根据所测数据不能求出A,B间距离的是(  )

A.BC,∠ACB
B.DE,DC,BC
C.EF,DE,BD
D.CD,∠ACB,∠ADB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=

(1)求反比例函数y= 和直线y=kx+b的解析式;
(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;
(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,CDABD

1)图中有几个直角三角形;

2)若AD=12AC=13,则CD等于多少;

3)若CD2=AD·DB 求证:ABC是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是( )
A. =15
B. =
C. =15
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.

1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)

2)小明家与小刚家相距多远?

3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,在ABC中,ABAC,分别以ABBC为边作等边ABE和等边BCD,连结CEAD

1)求证:∠ACD=∠ABD

2)判断DCCE的位置关系,并加以证明;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点(小正方形的顶点叫格点)上,连接BD.

(1)利用格点在图中画出ABDAD边上的高,垂足为H.

(2)①画出将ABD先向右平移2格,再向上平移2格得到的A1B1D1

②平移后,求线段AB扫过的部分所组成的封闭图形的面积.

查看答案和解析>>

同步练习册答案