【题目】如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1: ,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC= .
【答案】105°
【解析】解:连接OQ, ∵AC=BC,∠ACB=90°,
∴∠BAC=∠B=45°,
由旋转的性质可知:△AQC≌△BOC,
∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,
∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,
∴∠OQC=45°,
∵BO:OA=1: ,
设BO=1,OA= ,
∴AQ=1,则tan∠AQO= = ,
∴∠AQO=60°,
∴∠AQC=105°.
【考点精析】掌握等腰直角三角形和旋转的性质是解答本题的根本,需要知道等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.
科目:初中数学 来源: 题型:
【题目】如图1,已知数轴上有三点A、B、C,AB=60,点A对应的数是40.
(1)若,求点C到原点的距离;
(2)如图2,在(1)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒.经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度;
(3)如图3,在(1)的条件下,O表示原点,动点P、T分别从C、O两点同时出发向左运动,同时动点R从点A出发向右运动,点P、T、R的速度分别为5个单位长度/秒、1个单位长度/秒、2个单位长度/秒,在运动过程中,如果点M为线段PT的中点,点N为线段OR的中点.请问的值是否会发生变化?若不变,请求出相应的数值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把正整数1,2,3,4,…,2 009排列成如图所示的一个表.
(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从小到大依次是__ __,__ __,__ __;
(2)在(1)前提下,当被框住的4个数之和等于416时,x的值是多少?
(3)在(1)前提下,被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.
(1)求证:AD=AG;
(2)AD与AG的位置关系如何,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)和正比例函数y= x的图象如图所示,则方程ax2+(b﹣ )x+c=0(a≠0)的根的情况( )
A.两根都大于0
B.两根都等于0
C.两根都小于0
D.一根大于0,一根小于0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出关于轴对称的.
(2)写出点的坐标(直接写答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大正方体上截去一个小正方体后,可得到图的几何体.
设原大正方体的表面积为,图中几何体的表面积为,那么与的大小关系是( )
、、、、不确定
小明说:“设图中大正方体各棱的长度之和为,图中几何体各棱的长度之和为,那么比正好多出大正方体条棱的长度.”若设大正方体的棱长为,小正方体的棱长为,请问为何值时,小明的说法才正确?
如果截去的小正方体的棱长为大正方体棱长的一半,那么图是图中几何体的表面展开图吗?如有错误,请在图中修正.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG=CF.
(2)请你判断BE+CF与EF的大小关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com