【题目】如图,大正方体上截去一个小正方体后,可得到图的几何体.
设原大正方体的表面积为,图中几何体的表面积为,那么与的大小关系是( )
、、、、不确定
小明说:“设图中大正方体各棱的长度之和为,图中几何体各棱的长度之和为,那么比正好多出大正方体条棱的长度.”若设大正方体的棱长为,小正方体的棱长为,请问为何值时,小明的说法才正确?
如果截去的小正方体的棱长为大正方体棱长的一半,那么图是图中几何体的表面展开图吗?如有错误,请在图中修正.
科目:初中数学 来源: 题型:
【题目】以线段AC为对角线的四边形ABCD(它的四个顶点A,B,C,D按顺时针方向排列),已知AB=BC=CD,∠ABC=100°,∠CAD=40°,则∠BCD的度数为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1: ,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道1+2+3+…+=,则1+2+3+…+10= ___________ .
[问题提出] 那么 的结果等于多少呢?
[阅读理解] 在图1所示的三角形数阵中,第1行圆圈中的数为1,即12 ;第2行两个圆圈中数的和为2+2,即22;......;第n行n个圆圈中数的和为n+n+n即 n2;这样,该三角形数阵中共有____ 个圆圈,所有圆圈中数的和可表示为_________________ .
图1
[规律探究] 将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n-1行的第一个圆圈中的数分别为n-1,2,n)发现每个位置上三个圆圈中的数的和均为______________.由此可得,这三个三角形数阵所有圆圈中数的总和为:
3( )=_________________.因此, =__________.
图2
[问题解决]
(1).根据以上规律可得 __________________.
(2).试计算 ,请写出计算步骤.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+ 与y轴相交于点A,点B与点O关于点A对称.
(1)填空:点B的坐标为;
(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面积;
(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;
(3)写出点A1,B1,C1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知点A(4-a,-2a-3)和点B(-2,5),且AB∥x轴,试求点A的坐标;
(2)把点P(m+1,n-2m)先向右平移4个单位长度,再向下平移6个单位长度后得到点P′的坐标为(3,-2),试求m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:AB,PQ是圆O的两条直径,连接PB,AQ.
(1)如图①,求证:AQ∥BP,AG∥BP;
(2)如图②,过点B作BC⊥PQ于点D,交圆O于点C,在DG上取一点K,使DK=DP,求证:四边形AQKC是平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com