| A. | CM=BC | B. | CB=$\frac{1}{2}$AB | C. | ∠ACM=30° | D. | CH•AB=AC•BC |
分析 由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH∽△CHB,然后由相似三角形的对应边成比例,证得CH2=AH•HB;由△ABC中,∠ACB=90°,CM是斜边AB上中线,根据直角三角形斜边的中线等于斜边的一半,即可得CM=$\frac{1}{2}$AB.
解答 解:△ABC中,∠ACB=90°,CM分别是斜边AB上的中线,可得:CM=AM=MB,但不能得出CM=BC,故A错误;
根据直角三角形斜边的中线等于斜边的一半,即可得CM=$\frac{1}{2}$AB,但不能得出CB=$\frac{1}{2}$AB,故B错误;
△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,无法得出∠ACM=30°,故C错误;
由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH∽△CHB,根据相似三角形的对应边成比例得出CH•AB=AC•BC,故D正确;
故选D
点评 此题考查了相似三角形的判定与性质、勾股定理以及直角三角形斜边上的中线的性质.注意证得△ACH∽△CHB是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ①③ | B. | ②④ | C. | ①④ | D. | ②③ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 74° | B. | 63° | C. | 64° | D. | 73° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com