精英家教网 > 初中数学 > 题目详情

【题目】已知,直线ABCD,EAB、CD间的一点,连接EA、EC.


(1)如图①,若∠A=20°,C=40°,则∠AEC=   °.

(2)如图②,若∠A=x°,C=y°,则∠AEC=   °.

(3)如图③,若∠A=α,C=β,则α,β与∠AEC之间有何等量关系.并简要说明.

【答案】(1)60;(2) 360°﹣x°﹣y°(3)详见解析

【解析】首先都需要过点EEFAB,由ABCD,可得ABCDEF.

(1)根据两直线平行,内错角相等,即可求得∠AEC的度数;

(2)根据两直线平行,同旁内角互补,即可求得∠AEC的度数;

(3)根据两直线平行,内错角相等;两直线平行,同旁内角互补,即可求得∠AEC的度数.

如图,过点EEFAB,

ABCD,

ABCDEF.

(1)∵∠A=20°,C=40°,

∴∠1=A=20°,2=C=40°,

∴∠AEC=1+2=60°;

(2)∴∠1+A=180°,2+C=180°,

∵∠A=x°,C=y°,

∴∠1+2+x°+y°=360°,

∴∠AEC=360°﹣x°﹣y°;

(3)A=α,C=β,

∴∠1+A=180°,2=C=β,

∴∠1=180°﹣A=180°﹣α,

∴∠AEC=1+2=180°﹣α+β.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(

A.同位角相等

B.同一平面内的两条不重合的直线有相交、平行和垂直三种位置关系

C.三角形的三条高线一定交于三角形内部同一点

D.三角形三条角平分线的交点到三角形三边的距离相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,己知△ABC中,∠C=90°,∠A=30°,AC= .动点D在边AC上,以BD为边作等边△BDE(点E、A在BD的同侧).在点D从点A移动至点C的过程中,点E移动的路线长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 并在数轴上表示出它的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AECD相交于点B,射线BF平分∠ABC,射线BG在∠ABD内,

(1)若∠DBE的补角是它的余角的3倍,求∠DBE的度数;

(2)在(1)的件下,若∠DBG=∠ABG﹣33°,求∠ABG的度数;

(3)若∠FBG=100°,求∠ABG和∠DBG的度数的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若等腰三角形的两边长分别为5cm8cm,则它的周长是________cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC的面积为9,点O为坐标原点,点B在函数y= (k>0,x>0)的图象上点P(m,n)是函数图象上任意一点,过点P分别作x轴y轴的垂线,垂足分别为E,F.并设矩形OEPF和正方形OABC不重合的部分的面积为S.
(1)求k的值;
(2)当S= 时,求P点的坐标;
(3)写出S关于m的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:

1)起点A与终点B之间相距多远?

2)哪支龙舟队先出发?哪支龙舟队先到达终点?

3)分别求甲、乙两支龙舟队的yx函数关系式;

4)甲龙舟队出发多长时间时两支龙舟队相距200米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:线段

求作:ABC,使

【答案】答案见解析

【解析】试题分析:先画出与相等的角,再画出的长,连接,则即为所求三角形.

试题解析:如图所示:①先画射线BC

②以α的顶点为圆心,任意长为半径画弧,分别交α的两边交于为A′,C

③以相同长度为半径,B为圆心,画弧,BC于点F,F为圆心,CA为半径画弧,交于点E

④在BF上取点C,使CB=a,以B为圆心,c为半径画圆交BE的延长线于点A,连接AC

结论:△ABC即为所求三角形.

型】解答
束】
15

【题目】已知:线段 ,求作: ,使

查看答案和解析>>

同步练习册答案