精英家教网 > 初中数学 > 题目详情
在锐角△ABC中,AB=AC,∠A使关于x的方程x2-sinA•x+sinA-=0有两个相等的实数根.
(1)判断△ABC的形状;
(2)设D为BC上的一点,且DE⊥AB于E,DF⊥AC于F,若DE=m,DF=n,且3m=4n和m2+n2=25,求AB的长.
【答案】分析:(1)利用根的判别式求出sinA=,进而得出∠A=60°,再利用AB=AC,求出△ABC的形状.
(2)根据题意可得出∠BDE=∠CDF=30°,再由锐角三角函数关系可得出BD,CD,从而求出BC进而得出AB的长.
解答:解:(1)∵关于x的方程x2-sinA•x+sinA-=0有两个相等的实数根,
∴b2-4ac=sin2A-4×sinA-)=0,
则(sinA-2=0,
故sinA-=0,
即sinA=
解得:∠A=60°,
又∵AB=AC,
∴△ABC的形状为等边三角形;

(2)解:∵△ABC为等边三角形,
∴∠B=∠C=60°,
∵DE⊥AB于E,DF⊥AC于F,
∴∠BED=∠CFD=90°,∴∠EDB=∠FDC=30°,
∵DE=m,DF=n,且3m=4n和m2+n2=25,
∴m=
∴(2+n2=25,
解得:n=3,则m=4,
∴DE=4,DF=3,
∵cos30°=
∴BD===
∵cos30°=
∴CD==2
∴BC=+2=
则AB的长为
点评:此题考查了等边三角形的性质与判定以及一元二次方程根的判别式、锐角三角函数关系等知识,解题的关键是求出BD,CD的长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在锐角△ABC中,a、b、c分别表示为∠A、∠B、∠C的对边,O为其外心,则O点到三边的距离之比为(  )
A、a:b:c
B、
1
a
1
b
1
c
C、cosA:cosB:cosC
D、sinA:sinB:sinC

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B<60°(如图).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在锐角△ABC中,∠BAC=60°,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①B、E、D、C四点共圆;②AD•AC=AE•AB;③△DEF是等边三角形;④当∠ABC=45°时,BE=
2
DE中,一定正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南开区一模)在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD,则以下结论中一定正确的个数有(  )
①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

在锐角△ABC中,已知
cosA-
1
2
+|tanB-
3
|=0
,且AB=4,则△ABC的面积等于(  )

查看答案和解析>>

同步练习册答案