【题目】已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'.
(1)如图1,∠AEE'= °;
(2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;
(3)如图3,在(2)的条件下,如果CE=2,AE=,求ME的长.
【答案】(1)∠AEE'=30°;
(2)当点E在线段CD上时,;
当点E在CD的延长线上时,
时,;
时,;
时,;
(3).
【解析】
试题(1)根据旋转地的性质易得到△ADE≌△ABE/,∠EAE/=120°,所以∠AEE/=30°.
由于点E是射线CD上一动点,其位置不确定,故应分情况讨论:一是当点E在线段CD上时:此时易得;二是点E在CD的延长线上时,仍需考虑多种情况,可以知道,当∠EAD=300时,AE旋转后的直线与BC平行,当∠EAD=900时,AE旋转后的直线与AB共线,而∠EAD不可能为1200,所以应再次细分为三种情况:即当时;当时;当时.
(3)如图,作于点G, 作于点H.易知四边形AGHD是矩形和两个全等的直角三角形;∴点、B、C在一条直线上.继续作于Q.于点P. 多次利用勾股定理可得,,;继而证明Rt△AG E'∽Rt△FA E',根据相似三角形性质可求解.
试题解析:
解:(1) 30°.
当点E在线段CD上时,;
当点E在CD的延长线上,
时,;
时,;
时,.
(3)作于点G, 作于点H.
由AD∥BC,AD=AB=CD,∠BAD=120°,得∠ABC=∠DCB=60°,
易知四边形AGHD是矩形和两个全等的直角三角形.则GH="AD" , BG=CH.
∵,
∴点、B、C在一条直线上.设AD=AB=CD=x,则GH=x,BG=CH=,.
作于Q.在Rt△EQC中,CE="2,",
∴,.
∴E'Q=.
作于点P.
∵△ADE绕点A顺时针旋转120°后,得到△ABE'.
∴△A EE'是等腰三角形,.
∴在Rt△AP E'中,E'P=.
∴EE'="2" E'P=.
∴在Rt△EQ E'中,E'Q=.
∴.
∴.
∴,.
∴
在Rt△E'AF中,
∴Rt△AG E'∽Rt△FA E'.
∴
∴.
∴.
由(2)知:.
∴.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,①abc<0,②2a+b>0,③a-b+c<0,④b2>4ac,⑤关于x的方程ax2+bx+c-2=0没有实数根.则下列结论正确的有______.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从2,2,3,4四个数中随机取两个数,第一个作为个位上的数字,第二个作为十位上的数字,组成一个两位数,则这个两位数是2的倍数的概率是 ( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数 | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数 | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的频率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)请估计:当很大时,摸到白球的频率将会接近 .(精确到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)= .
(3)试估算盒子里黑、白两种颜色的球各有多少只?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,形如量角器的半圆的直径,形如三角板的中,,,,半圆以的速度从左向右运动,在运动过程中,点、始终在直线上,设运动时间为,当时,半圆在的左侧,.
当时,点在半圆________,当时,点在半圆________;
当为何值时,的边与半圆相切?
当为何值时,的边与半圆相切?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com