精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.

(1)求证:DE是⊙O的切线;
(2)若△ABC的边长为4,求EF的长度.

【答案】
(1)证明:如图1,连接OD,

∵△ABC是等边三角形,

∴∠B=∠C=60°.

∵OB=OD,

∴∠ODB=∠B=60°.

∵DE⊥AC,

∴∠DEC=90°.

∴∠EDC=30°.

∴∠ODE=90°.

∴DE⊥OD于点D.

∵点D在⊙O上,

∴DE是⊙O的切线


(2)解:如图2,连接AD,BF,

∵AB为⊙O直径,

∴∠AFB=∠ADB=90°.

∴AF⊥BF,AD⊥BD.

∵△ABC是等边三角形,

∵∠EDC=30°,

∴FE=FC﹣EC=1.


【解析】(1)连接OD,根据等边三角形的性质求出∠ODE=90°,根据切线的判定定理证明即可;(2)连接AD,BF,根据等边三角形的性质求出DC、CF,根据直角三角形的性质求出EC,结合图形计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过A(﹣4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(﹣4,0)、C(0,3)两点.

(1)写出方程ax2+bx+c=0的解;
(2)若ax2+bx+c>mx+n,写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①在长方形ABCDAB=12 cm,BC=6 cm.P沿AB边从点A开始向点B2 cm/s的速度移动;点Q沿DA边从点D开始向点A1 cm/s的速度移动.

设点PQ同时出发t(s)表示移动的时间.

(发现) DQ________cm,AP________cm.(用含t的代数式表示)

(拓展)(1)如图①t________s线段AQ与线段AP相等?

(2)如图②PQ分别到达BA后继续运动P到达点C后都停止运动.

t为何值时AQCP?

(探究)若点PQ分别到达点BA后继续沿着ABCDA的方向运动当点P与点Q第一次相遇时请直接写出相遇点的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究规律

在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点MN,若点M和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1MO=NO=2,则点M和点N互为基准变换点.

发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.

①若a=0,则b=   ;若a=4,则b=   

②用含a的式子表示b,则b=   

应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?

探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4P3的基准变换点,“…依次顺序不断的重复,得到P6,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现政府大力提倡绿色、低碳出行,越来越多的人选择用电动车出行,某商场销售的一款电动车每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.

(1)求这款电动车每台的进价?(利润率==).

(2)在这次促销活动中,商场销售了这款电动车100台,问盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:

(1)小明总共剪开了_______条棱.

(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.

(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状.抛物线两端点与水面的距离都是1m,拱桥的跨度为10cm.桥洞与水面的最大距离是5m.桥洞两侧壁上各有一盏距离水面4m的景观灯.现把拱桥的截面图放在平面直角坐标系中,如图(2).求:

(1)抛物线的解析式;
(2)两盏景观灯P1、P2之间的水平距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°AB的垂直平分线DEBC的延长线于点F,若∠F=30°DE=1,试求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点P、Q分别为BC、CD边上一点,且BP=CQ=BC,连接AP、BQ交于点G,在AP的延长线上取一点E,使GE=AG,连接BE、CE.CBE的平分线BNAE于点N,连接DN,若DN=,CE的长为_____

查看答案和解析>>

同步练习册答案