【题目】如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F.已知∠AEF=135°.
(1)求证:DF∥AB;
(2)若OC=CE,BF= ,求DE的长.
【答案】
(1)证明:连接OF,
∵A、E、F、B四点共圆,
∴∠AEF+∠B=180°,
∵∠AEF=135°,
∴∠B=45°,
∴∠AOF=2∠B=90°,
∵DF切⊙O于F,
∴∠DFO=90°,
∵DC⊥AB,
∴∠DCO=90°,
即∠DCO=∠FOC=∠DFO=90°,
∴四边形DCOF是矩形,
∴DF∥AB
(2)解:过E作EM⊥BF于M,
∵四边形DCOF是矩形,
∴OF=DC=OA,
∵OC=CE,
∴AC=DE,
设DE=x,则AC=x,
∵在Rt△FOB中,∠FOB=90°,OF=OB,BF=2 ,由勾股定理得:OF=OB=2,
则AB=4,BC=4﹣x,
∵AC=DE,OCDF=CE,
∴由勾股定理得:AE=EF,
∴∠ABE=∠FBE,
∵EC⊥AB,EM⊥BF
∴EC=EM,∠ECB=∠M=90°,
在Rt△ECA和Rt△EMF中
∴Rt△ECA≌Rt△EMF,
∴AC=MF=DE=x,
在Rt△ECB和Rt△EMB中,由勾股定理得:BC=BM,
∴BF=BM﹣MF=BC﹣MF=4﹣x﹣x=2 ,
解得:x=2﹣ ,
即DE=2﹣ .
【解析】(1)证明:连接OF,根据圆内接四边形的性质得到∠AEF+∠B=180°,由于∠AEF=135°,得出∠B=45°,于是得到∠AOF=2∠B=90°,由DF切⊙O于F,得到∠DFO=90°,由于DC⊥AB,得到∠DCO=90°,于是结论可得;(2)过E作EM⊥BF于M,由四边形DCOF是矩形,得到OF=DC=OA,由于OC=CE,推出AC=DE,设DE=x,则AC=x,在Rt△FOB中,∠FOB=90°,OF=OB,BF=2 ,由勾股定理得:OF=OB=2,则AB=4,BC=4﹣x,由于AC=DE,OCDF=CE,由勾股定理得:AE=EF,通过Rt△ECA≌Rt△EMF,得出AC=MF=DE=x,在Rt△ECB和Rt△EMB中,由勾股定理得:BC=BM,问题可得.
【考点精析】通过灵活运用切线的性质定理,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,AB是O的直径,AE交O于点E,且与O的切线CD互相垂直,垂足为D.
(1)求证:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半径;②求tan∠BAE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+ )海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文的26个字母a、b、c,…,z依次对应1、2、3,…,26这26个自然数(见表格),当明码对应的序号x为奇数时,密码对应的序号 ;当明码对应的序号x为偶数时,密码对应的序号 .
字母 | a | b | c | d | e | f | g | h | i | j | k | l | m |
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
字母 | n | o | p | q | r | s | t | u | v | w | x | y | z |
序号 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
按上述规定,将明码“bird”译成密码是( )
A.bird
B.nove
C.sdri
D.nevo
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 y=ax2+bx+c(a≠0)经过点A(-3,0)、B(1,0)、C(-2,1),交y轴于点M.
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A.N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一堂关于“折纸问题”的数学综合实践探究课中,小明同学将一张矩形ABCD纸片,按如图进行折叠,分别在BC、AD两边上取两点E,F,使CE=AF,分别以DE,BF为对称轴将△CDE与△ABF翻折得到△C′DE与△A′BF,且边C′E与A′B交于点G,边A′F与C′D交于一点H.已知tan∠EBG= ,A′G=6,C′G=1,则矩形纸片ABCD的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图①,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,点P为线段BC上的一动点(不运动到C,B两点)过点P作PQ⊥BC交AB于点Q,在AC边上取一点D,使QD=QP,连结DP,设CP=x
(1)求QP的长,用含x的代数式表示.
(2)当x为何值时,△DPQ为直角三角形?
(3)记点D关于直线PQ的对称点为点D′.
①当点D′落在AB边上时,求x的值;
②在①的条件下,如图②,将此时的△DPQ绕点P顺时针旋转一个角度α(0°<α<∠DPB),在旋转过程中,设DP所在的直线与直线AB交于点M,与直线AC交于点N,是否存在这样的M,N两点,使△AMN为等腰三角形?若存在,求出此时AN的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E、F分别是ABCD的边BC、AD上的点,且BE=DF.
(1)求证:四边形AECF是平行四边形;
(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年3月,成都市某区一周天气质量报告中某项污染指标的数据是:60,60,100,90,90,70,90,则下列关于这组数据表述正确的是( )
A.众数是60
B.中位数是100
C.平均数是78
D.极差是40
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com