精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线 y=ax2+bx+ca≠0)经过点A(-3,0)、B(1,0)、C(-2,1),交y轴于点M.
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A.N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.

【答案】
(1)

解:由题意可知 .解得 .

∴抛物线的表达式为y= .


(2)

解:将x=0代入抛物线表达式,得y=1.∴点M的坐标为(0,1).

设直线MA的表达式为y=kx+b,则

.解得k= ,b=1.∴直线MA的表达式为y= x+1.

设点D的坐标为( ),则点F的坐标为( ).

DF=

= .

时,DF的最大值为 .

此时 ,即点D的坐标为( ).


(3)

存在点P,使得以点P、A.N为顶点的三角形与△MAO相似.

在Rt△MAO中,AO=3MO,要使两个三角形相似,由题意可知,点P不可能在第一象限.

① 设点P在第二象限时,∵点P不可能在直线MN上,∴只能PN=3NM,

,即 .

解得m=-3(舍去)或m=-8.又-3<M<0,故此时满足条件的点不存在.

② 当点P在第三象限时,∵点P不可能在直线MN上,∴只能PN=3NM,

,即 .

解得m=-3或m=8.此时点P的坐标为(-8,,15).

③ 当点P在第四象限时,

若AN=3PN时,则-3 ,即 .

解得m=-3(舍去)或m=2.

当m=2时, .此时点P的坐标为(2,- ).

若PN=3NA,则- ,即 .

解得m=-3(舍去)或m=10,此时点P的坐标为(10,,39).

综上所述,满足条件的点P的坐标为(-8,,15)、(2,- )、(10,,39).


【解析】(1)把三个点的坐标代入二次函数解析式,求出a、b、c的值;
(2)表示出D、F两点的坐标和DF的长度,然后根据二次函数的性质求出最值;
(3)利用三角形的相似性进行解答。
【考点精析】利用二次函数的概念和二次函数的图象对题目进行判断即可得到答案,需要熟知一般地,自变量x和因变量y之间存在如下关系:一般式:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数;二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).

(1)当t=s时,△BPQ为等腰三角形;
(2)当BD平分PQ时,求t的值;
(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F处.若△FDE的周长为5,△FCB的周长为17,则FC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F.已知∠AEF=135°.
(1)求证:DF∥AB;
(2)若OC=CE,BF= ,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋里装有2个红球,1个白球,1个黄球,它们除颜色外其余都相同.
(1)求从袋中摸出一个球是黄球的概率.
(2)摸出一个球,记下颜色后不放回,搅拌均匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2x﹣3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2 . 设d=d1+d2 , 下列结论中:
①d没有最大值;
②d没有最小值;
③﹣1<x<3时,d随x的增大而增大;
④满足d=5的点P有四个.
其中正确结论的个数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

同步练习册答案