精英家教网 > 初中数学 > 题目详情
已知:如图,点O是四边形BCED外接圆的圆心,点O在BC上,点A在CB的延长线上,且∠AD精英家教网B=∠DEB,EF⊥BC于点F,交⊙O于点M,EM=2
5

(1)求证:AD是⊙O的切线;
(2)若弧BM上有一动点P,且sin∠CPM=
2
3
,求⊙O直径的长;
(3)在(2)的条件下,如果DE=
14
,求tan∠DBE的值.
分析:(1)连接OD,由BC是⊙O的直径,根据圆周角定理的推论得到∠BDC=90°,而∠CBD=∠ODB,∠DEB=∠BCD,则∠ADB+∠ODB=90°,即可得到结论;
(2)根据圆周角定理得到∠CPM=∠CEM,则sin∠CEM=sin∠CPM=
FC
EC
=
2
3
,设FC=2k,则EC=3k,EF=
5
k,根据垂径定理得EF=
5
,弧EC=弧MC.则k=1,FC=2,EC=3;再由圆周角定理的推论得到∠BEC=90°,sin∠EBC=sinP=
EC
BC
=
2
3
,即可求出BC;
(3)作直径EQ,连接DQ.根据圆周角定理的推论得∠QDE=90°,在Rt△DEQ中利用勾股定理求出DQ,而∠DBE=∠Q,然后利用正切的定义计算即可.
解答:精英家教网(1)证明:连接OD,
∵BC是⊙O的直径,
∴∠BDC=90°,
∴∠BCD+∠CBD=90°.
又∵OD=OB,
∴∠CBD=∠ODB.
∴∠BCD+∠ODB=90°.
∵∠ADB=∠DEB,
而∠DEB=∠BCD,
∴∠ADB=∠BCD.
∴∠ADB+∠ODB=90°.
∴AD是⊙O的切线;

(2)解:∵∠CPM=∠CEM,
∴sin∠CEM=sin∠CPM=
FC
EC
=
2
3

设FC=2k,则EC=3k,EF=
5
k,精英家教网
∵EM与直径BC垂直,且EM=2
5

∴EF=
5
,弧EC=弧MC.
∴k=1,FC=2,EC=3,∠EBC=∠P.
∵BC是⊙O的直径,
∴∠BEC=90°,
∴sin∠EBC=sin∠CPM=
EC
BC
=
2
3

∴BC=
9
2

即⊙O直径为
9
2

精英家教网
(3)作直径EQ,连接DQ.
∴∠QDE=90°,EQ=
9
2

在Rt△DEQ中,DQ=
EQ2-DE2
=
5
2

∵∠DBE=∠Q,
∴tan∠DBE=tan∠Q=
14
5
2
=
2
14
5
点评:本题考查了切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了垂径定理、圆周角定理及其推论、勾股定理以及解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,点E、F、G、H分别是梯形ABCD四条边上的中点,AD∥BC,AB=CD=EG=4.
(1)求梯形ABCD的周长;
(2)∠1与∠2是否相等?为什么?
(3)求证:四边形EFGH是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE.
求证:(1)EF=FP=PQ=QE;
(2)四边形EFPQ是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图1,△ABC是直角三角形,AB=AC=1,用四个与△ABC全等的三角形拼成一个正方形DEFG,如图2.
(1)正方形的DEFG的面积是
2
2
,正方形的DEFG的边长是
2
2

(2)△ABC的斜边BC长=
2
2

(3)根据上面的经验解决问题:直角坐标系中,M(1,1),N(-
2
2
),点P在x轴上,则PM+PN的最小值是
2
+2
2
+2
,并在图中作出点P.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省启东市九年级中考适应性考试(一模)数学试卷(带解析) 题型:解答题

已知:如图1,△OAB是边长为2的等边三角形,OAx轴上,点B在第一象限内;△OCA是一个等腰三角形,OCAC,顶点C在第四象限,∠C=120°.现有两动点PQ分别从AO两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿AOB运动,当其中一个点到达终点时,另一个点也随即停止.

(1)求在运动过程中形成的△OPQ面积S与运动时间t之间的函数关系,并写出自变量t的取值范围;
(2)在OA上(点OA除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图2,现有∠MCN=60°,其两边分别与OBAB交于点MN,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得MN始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年河北省保定市易县九年级第二次模拟检测数学试卷(解析版) 题型:解答题

已知:如图1,△OAB是边长为2的等边三角形,OAx轴上,点B在第一象限内;△OCA是一个等腰三角形,OCAC,顶点C在第四象限,∠C=120°.现有两动点PQ分别从AO两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿AOB运动,当其中一个点到达终点时,另一个点也随即停止.

(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;

(2)在OA上(点OA除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;

(3)如图2,现有∠MCN=60°,其两边分别与OBAB交于点MN,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得MN始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.

 

查看答案和解析>>

同步练习册答案