精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,点E、F、G、H分别是梯形ABCD四条边上的中点,AD∥BC,AB=CD=EG=4.
(1)求梯形ABCD的周长;
(2)∠1与∠2是否相等?为什么?
(3)求证:四边形EFGH是菱形.
分析:(1)根据梯形的中位线定理得到梯形的上下底的和,进一步求得梯形的周长;
(2)根据等腰梯形的性质和全等三角形的判定进行证明,从而得到两个角相等;
(3)连接对角线.根据梯形的中位线定理,可以得到该四边形的每一条边都是对角线的一半,结合对角线相等,即可证明该四边形的四条边都相等,从而证明是菱形.
解答:精英家教网解:(1)由已知,得:EG是梯形的中位线,
∴AD+BC=2×4=8,
∴梯形ABCD的周长=AD+BC+CD+AD,
=4+4+8=16;

(2)∠1=∠2
由已知得:EB=GC=
1
2
AB,BF=CF=
1
2
BC,
而AB=CD,∴∠B=∠C,
∴△EBF≌△GCF
∴∠1=∠2;

(3)证法一:连接AC、BD,
在梯形ABCD中,AB=CD,∴AC=BD
在△ABD中,∵点E、H分别为AB、AD的中点,
∴EH=
1
2
BD,
同理:FG=
1
2
BD,EF=
1
2
AC,GH=
1
2
AC,
∴EF=FG=GH=HE=
1
2
BD,
∴四边形EFGH是菱形.
点评:熟练运用梯形的中位线定理.注意:顺次连接对角线相等的四边形各边中点所得的四边形是菱形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知:如图,点O为?ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC的延长线于点E、F,求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C(-
2
5
4
5
)
,E为直径精英家教网OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.
(1)求直线AB的解析式;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.BF,CE相交于点O.
(1)求证:∠ACE=∠DBF;
(2)若点B是AC的中点,∠E=60°,AE=4,求△OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P是半径为5cm的⊙O外的一点,OP=13cm,PT切⊙O于T,过P点作⊙O的割线PAB,(PB>PA).设PA=x,PB=y,求y关于x的函数解析式,并确定自变量x的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淮阴区模拟)已知:如图,点E、A、C在同一条直线上,AB=CE,AC=CD,BC=ED.求证:AB∥CD.

查看答案和解析>>

同步练习册答案