精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.BF,CE相交于点O.
(1)求证:∠ACE=∠DBF;
(2)若点B是AC的中点,∠E=60°,AE=4,求△OBC的面积.
分析:(1)根据垂直的定义,以及已知条件,再根据SAS即可证明△ACE≌△DBF,根据全等三角形对应角相等即可证明∠ACE=∠DBF,
(2)根据特殊角的三角函数值得出BC,同时根据已知角得出△OBC的高,从而得出答案.
解答:(1)证明:∵AB=DC,BC=BC,
∴AC=DB,
∵EA⊥AD,FD⊥AD,
∴∠A=∠D=90°,
∵AE=DF,
∴△EAC≌△FDB(SAS),
∴∠ACE=∠DBF.
精英家教网
(2)过点O作OM⊥BC,垂足为M,
∵∠E=60°,
∴∠OBC=∠OCB=30°,
∴△OBC为等腰三角形,
tan60°=
AC
AE
=
AC
4
=
3

∴AC=4
3

∵点B是AC的中点,
∴BM=
3

∵△OBC为等腰三角形,
∴OM既是高也是中线,
∴BC=2
3

在Rt△BOM中,
tan30°=
OM
BM
=
OM
3
=
3
3

∴OM=1,
S△BOC=
1
2
BC•OM=
1
2
×2
3
×1=
3
点评:本题主要考查了三角形全等的判定方法、等腰三角形的性质、特殊角的三角函数值,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.证明角、边相等常常运三角形全等来证明,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知:如图,点O为?ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC的延长线于点E、F,求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C(-
2
5
4
5
)
,E为直径精英家教网OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.
(1)求直线AB的解析式;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P是半径为5cm的⊙O外的一点,OP=13cm,PT切⊙O于T,过P点作⊙O的割线PAB,(PB>PA).设PA=x,PB=y,求y关于x的函数解析式,并确定自变量x的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淮阴区模拟)已知:如图,点E、A、C在同一条直线上,AB=CE,AC=CD,BC=ED.求证:AB∥CD.

查看答案和解析>>

同步练习册答案