精英家教网 > 初中数学 > 题目详情
2.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是(  )
A.7B.8C.9D.10

分析 根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.

解答 解:∵矩形ABCD中,G是CD的中点,AB=8,
∴CG=DG=$\frac{1}{2}$×8=4,
在△DEG和△CFG中,
$\left\{\begin{array}{l}{∠D=∠DCF=90°}\\{CG=DG}\\{∠DGE=∠CGF}\end{array}\right.$,
∴△DEG≌△CFG(ASA),
∴DE=CF,EG=FG,
设DE=x,
则BF=BC+CF=AD+CF=4+x+x=4+2x,
在Rt△DEG中,EG=$\sqrt{D{E}^{2}+D{G}^{2}}$=$\sqrt{{x}^{2}+16}$,
∴EF=2$\sqrt{{x}^{2}+16}$,
∵FH垂直平分BE,
∴BF=EF,
∴4+2x=2$\sqrt{{x}^{2}+16}$,
解得x=3,
∴AD=AE+DE=4+3=7,
∴BC=AD=7.
故选A.

点评 本题考查了全等三角形的判定与性质,矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点,连结DE.
(1)求证:GE=AG=GD;
(2)试判断直线GE与⊙O的位置关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列命题是真命题的是(  )
A.两条直线被第三条直线所截,同位角相等
B.两点之间,垂线段最短
C.两个无理数的和一定是无理数
D.实数与数轴上的点一一对应

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.一个数的平方是4,那么这个数是-2,2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.掷一枚标有数字1-6的均匀正方体骰子,向上一面的点数是“2”的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如果点Q(a,b),且ab=0,那么点Q所在的位置是(  )
A.在第一象限B.在x轴或y轴上C.在x轴上D.在y轴上

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知AC平分∠DAB,∠1=∠2,∠D=126°,求∠DAB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
【问题一】平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似?
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形不相似(填“相似”或“不相似”或“相似性无法确定”,不要求证明)
【问题二】平行于梯形底边的直线截两腰所得的两个小梯形和原梯形是否相似?
(1)从特殊平行线入手探究,梯形的中位线截两腰所得的两个小梯形不相似(填“相似”或“不相似”或“相似性无法确定”,不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点PQ在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由.
(3)一般结论:对于任意梯形(如图③),一定存在(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似?若存在,则确定这条平行线位置的条件是$\frac{AP}{PB}$=$\frac{\sqrt{ab}}{b}$(设AD=a,BC=b,AB=c,CD=d.用含a、b的式子表示 ).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,已知双曲线y=$\frac{k}{x}$(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-4,6),则△AOC的面积为(  )
A.4B.6C.9D.12

查看答案和解析>>

同步练习册答案