精英家教网 > 初中数学 > 题目详情

【题目】如图是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为_____m2

【答案】0.81π

【解析】分析:如图设C,D分别是桌面和其地面影子的圆心,依题意可以得到△OBC∽△OAD,然后由它们的对应边成比例可以求出地面影子的半径,这样可以求出阴影部分的面积.

详解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD, ∴△OBC∽△OAD

∴而OD=3,CD=1, ∴OC=OD-CD=3-1=2,BC=×1.2=0.6, ∴

∴AD=0.9 , S=π×0.92=0.81πm2,这样地面上阴影部分的面积为0.81πm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,OD平分∠BOCOE平分∠AOC

1)若∠BOC=60°,∠AOC=40°,求∠DOE的度数;

2)若∠DOE=n°,求∠AOB的度数;

3)若∠DOE+AOB=180°,求∠AOB与∠DOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校的春季趣味运动会深受学生喜爱,该校体育教师为了了解该次运动会中四个项目的受欢迎程度,随机抽取了部分学生进行问卷调查,被调查学生须从托球跑、掷飞盘、推小车、鸭子步四个项目中选择自己最喜欢的一项.

根据调查结果,体育教师绘制了图1和图2两个统计图(均未完成),请根据图1和图2的信息,解答下列问题.

(1)此次共调查了多少名学生?

(2)将条形统计图补充完整.

(3)2鸭子步所在扇形圆心角为多少度?

(4)若全校有学生1600人,估计该校喜欢推小车项目的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【题目】有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BAFD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.

(1)如图2,当三角板DEF运动到点D与点A重合时,设EFBC交于点M,则∠EMC=  度;

(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;

(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求yx的函数解析式,并求出对应的x取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AC,BD相交于点O,OAC的中点,AD//BC,AC=8,BD=6.

(1)求证:四边形ABCD是平行四边形;

(2)若ACBD,求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为原点,AB为数轴上两点,AB15,且OAOB21,点P从点B以每秒4个单位的速度向右运动.

1AB对应的数分别为      

2)当点P运动时,分别取BP的中点EAO的中点F,请画图,并求出的值;

3)若当点P开始运动时,点AB分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OPmBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

F

上学方式

电动车

私家车

公共交通

自行车

步行

其他

某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图

根据以上信息,回答下列问题:

(1)参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.

(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.

(3)若将ACDE这四类上学方式视为绿色出行,请估计该校每天绿色出行的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO=10,则⊙O的半径长为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣ ),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.

(1)求A、B两点的坐标;

(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;

(3)当△BDM为直角三角形时,求m的值.

查看答案和解析>>

同步练习册答案