精英家教网 > 初中数学 > 题目详情

【题目】有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有(
A.240种
B.192种
C.96种
D.48种

【答案】B
【解析】解:分三步:先排甲,有一种方法;再排乙、丙,排在甲的左边或右边各有4种方法;再排其余4人,有A44种方法, 故共有2×4×A44=192(种).
故选B.
分三步:先排甲;再排乙、丙;最后排其余4人,利用分步计数原理,可得结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列命题中,是真命题的是(

A. 两条直线被第三条直线所截,同位角相等B. 垂直于同一直线的两直线平行

C. 相等的角是对顶角D. 平行于同一直线的两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【新知理解】

如图①,点C在线段AB上,图中共有三条线段ABACBC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB巧点”.

线段的中点__________这条线段的巧点;(填不是.

AB = 12cm,点C是线段AB的巧点,则AC=___________cm

【解决问题】

3如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点PQ同时出发,当其中一点到达终点时,运动停止,设移动的时间为ts.t为何值时,APQ三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了深化课程改革,省实验积极开展校本课程建设,计划成立“增量阅读”、“趣味数学”、“音乐舞蹈”和“戏剧英语”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了初中部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):

选择意向

增量阅读

趣味数学

音乐舞蹈

戏曲英语

其他

所占百分比

a

20%

b

10%

5%


根据统计图表的信息,解答下列问题:

(l)求本次抽样调查的学生总人数及a、b的值:

(2)将条形统计图补充完整;

(3)若该校共有5000名学生,试估计全校选择“音乐舞蹈”社团的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】16,如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2017个点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等边△ABE和等边△ACD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.

【深入探究】

(2)如图2,△ABC中,∠ABC=45°,AB=5cm,BC=3cm,分别以AB、AC为边向外作正方形ABNE和正方形ACMD,连接BD,求BD的长.

(3)如图3,在(2)的条件下,以AC为直角边在线段AC的左侧作等腰直角△ACD,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为(

A.6
B.8
C.9
D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按图填空,并注明理由.

⑴完成正确的证明:如图,已知AB∥CD,求证:∠BED=∠B+∠D

证明:过E点作EF∥AB(经过直线外一点有且只有一条直线与这条直线平行)

∴∠1= ( )

∵AB∥CD(已知)

∴EF∥CD(如果两条直线与同一直线平行,那么它们也平行)

∴∠2= ( )

又∠BED=∠1+∠2

∴∠BED=∠B+∠D (等量代换).

⑵如图,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.

解:因为EF∥AD(已知)

所以∠2=∠3.( )

又因为∠1=∠2,所以∠1=∠3.(等量代换)

所以AB∥ ( )

所以∠BAC+ =180°( ).

又因为∠BAC=70°,所以∠AGD=110°.

图⑴ 图⑵

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是等边△ABC内一点,连接PA,PB,PC,PA:PB:PC=3:4:5,以AC为边作△AP′C≌△APB,连接PP′,则有以下结论:①△APP′是等边三角形;②△PCP′是直角三角形;③∠APB=150°;④∠APC=105°.其中一定正确的是 . (把所有正确答案的序号都填在横线上)

查看答案和解析>>

同步练习册答案