精英家教网 > 初中数学 > 题目详情

【题目】画图并填空,如图:方格纸中每个小正方形的边长都为1,ABC的顶点都在方格纸的格点上,将ABC经过一次平移后得到A'B'C'.图中标出了点C的对应点C'.

(1)请画出平移后的A'B'C';

(2)若连接AA',BB',则这两条线段的关系是

(3)利用网格画出ABCAC边上的中线BD以及AB边上的高CE;

(4)线段AB在平移过程中扫过区域的面积为

【答案】(1)图见解析;(2)平行且相等;(3)见解析;(4)20;

【解析】1)直接利用平移的性质得出对应点位置进而得出答案

2)直接利用平移的性质得出两条线段之间的关系

3)利用网格得出AC的中点即可得出答案利用网格得出高CE即可得出答案

4)直接利用线段AB在平移过程中扫过区域的面积进而得出答案.

1)如图所示,(2)根据平移的性质可得AABB′,AA′=BB′.

故答案为:平行且相等

3)如图所示

4)线段AB在平移过程中扫过区域的面积=S四边形AABB=5×4=20

故答案为:20

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(探究)如图①,∠AFH和∠CHF的平分线交于点OEG经过点O且平行于FH,分别与ABCD交于点EG

(1)若∠AFH60°,∠CHF50°,则∠EOF_____度,∠FOH_____度.

(2)若∠AFH+CHF100°,求∠FOH的度数.

(拓展)如图②,∠AFH和∠CHI的平分线交于点OEG经过点O且平行于FH,分别与ABCD交于点EG.若∠AFH+CHFα,直接写出∠FOH的度数.(用含a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠A∶∠ABC∶∠ACB=3∶4∶5,BD,CE分别是边AC,AB上的高,BD,CE相交于H,求∠BHC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,不添加辅助线,请写出一个能判断EB∥AC的条件:___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知直线y= x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+4ax+b经过A.C两点,且与x轴交于另一点B.

(1)求抛物线的解析式;
(2)若点Q在抛物线上,且△AQC与△BQC面积相等,求点Q的坐标;
(3)如图2,P为△AOC外接圆上弧ACO的中点,直线PC交x轴于点D,∠EDF=∠ACO,当∠EDF绕点D旋转时,DE交直线AC于点M,DF交y轴负半轴于点N.请你探究:CN﹣CM的值是否发生变化?若不变,求出其值;若变化,求出变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司有两种型号的客车共20辆,它们的载客量、每天的租金如下表所示.已知在20辆客车都坐满的情况下,共载客720人.

A型号客车

B型号客车

载客量(人/辆)

45

30

租金(元/辆)

600

450

(1)求两种型号的客车各有多少辆?

(2)某中学计划租用两种型号的客车共8辆,同时送七年级师生到沙家浜参加社会实践活动,已知该中学租车的总费用不超过4600元. 求最多能租用多少辆A型号客车?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点E为矩形ABCD外一点,连接AE,DE,且AE=DE,连接EB,EC分别与AD相交于点F,G.

(1)如图1,求证:∠ABE=∠DCE;

(2)如图2,若△BCE是等边三角形,且AE=AB,在不添加任何辅助线的情况下,请直接写出图2中四对全等的钝角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.

(1)证明:BC=DE;

(2)若AC=12,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.
(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)
(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)

查看答案和解析>>

同步练习册答案