精英家教网 > 初中数学 > 题目详情

【题目】(探究)如图①,∠AFH和∠CHF的平分线交于点OEG经过点O且平行于FH,分别与ABCD交于点EG

(1)若∠AFH60°,∠CHF50°,则∠EOF_____度,∠FOH_____度.

(2)若∠AFH+CHF100°,求∠FOH的度数.

(拓展)如图②,∠AFH和∠CHI的平分线交于点OEG经过点O且平行于FH,分别与ABCD交于点EG.若∠AFH+CHFα,直接写出∠FOH的度数.(用含a的代数式表示)

【答案】【探究】(1)30,125;(2)∠FOH=130°;【拓展】FOH=90°﹣α

【解析】

1)先根据角平分线的定义求出OFHFHO 的度数,再根据三角形的内角和定理求出FOH的度数

2)先根据角平分线的定义求出OFH+FHO 的度数,再根据三角形的内角和定理求出FOH的度数

(拓展) 先根据角平分线的定义求出OFHAFH,∠OHICHI180°-CHF再根据两直线平行内错角相等得FOH=∠OHI﹣∠OFH即可。

1)∵∠AFH60°OF平分∠AFH

∴∠OFH30°

又∵EGFH

∴∠EOF=∠OFH30°两直线平行内错角相等);

∵∠CHF50°OH平分∠CHF

∴∠FHO25°

∴△FOH中,∠FOH180°﹣∠OFH﹣∠OHF125°三角形的内角和定理

故答案为:30125

2)∵FO平分∠AFHHO平分∠CHF

∴∠OFHAFH,∠OHFCHF

∵∠AFH+CHF100°

∴∠OFH+OHF(∠AFH+CHF)=×100°50°

EGFH

∴∠EOF=∠OFH,∠GOH=∠OHF两直线平行内错角相等).

∴∠EOF+GOH=∠OFH+OHF50°

∵∠EOF+GOH+FOH180°三角形的内角和定理

∴∠FOH180°﹣(∠EOF+GOH )=180°50°130°

拓展∵∠AFH和∠CHI的平分线交于点O

∴∠OFHAFH,∠OHICHI

∴∠FOH=∠OHI﹣∠OFH

(∠CHI﹣∠AFH

180°﹣∠CHF﹣∠AFH

180°α

90°α

【探究】

1)∵∠AFH=60°,OF平分∠AFH

∴∠OFH=30°,

又∵EGFH

∴∠EOF=∠OFH=30°;

∵∠CHF=50°,OH平分∠CHF

∴∠FHO=25°,

∴△FOH中,∠FOH=180°﹣∠OFH﹣∠OHF=125°;

故答案为:30,125;

(2)∵FO平分∠AFHHO平分∠CHF

∴∠OFHAFH,∠OHFCHF

∵∠AFH+∠CHF=100°,

∴∠OFH+∠OHF(∠AFH+∠CHF)=×100°=50°.

EGFH

∴∠EOF=∠OFH,∠GOH=∠OHF

∴∠EOF+∠GOH=∠OFH+∠OHF=50°.

∵∠EOF+∠GOH+∠FOH=180°,

∴∠FOH=180°﹣(∠EOF+∠GOH )=180°﹣50°=130°.

拓展∵∠AFH和∠CHI的平分线交于点O

∴∠OFHAFH,∠OHICHI

∴∠FOH=∠OHI﹣∠OFH

(∠CHI﹣∠AFH

(180°﹣∠CHF﹣∠AFH

(180°﹣α

=90°﹣α

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)化简:( + )÷
(2)解不等式组

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑摩托车从B地到A地,到达A地后立即按原路返回.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:

(1)直接写出y,y与x之间的函数关系式(不写过程);

(2)①求出点M的坐标,并解释该点坐标所表示的实际意义;

根据图象判断,x取何值时,y>y

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:

次数

1

2

3

4

5

6

7

8

9

10

黑棋数

1

3

0

2

3

4

2

1

1

3

根据以上数据,估算袋中的白棋子数量为(
A.60枚
B.50枚
C.40枚
D.30枚

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】海上有一小岛,为了测量小岛两端A、B的距离,测量人员设计了一种测量方法,如图所示,已知B点是CD的中点,E是BA延长线上的一点,测得AE=8.3海里,DE=30海里,且DE⊥EC,cos∠D=
(1)求小岛两端A、B的距离;
(2)过点C作CF⊥AB交AB的延长线于点F,求sin∠BCF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).

(1)画出与△ABC 关于 y 轴对称的图形△A1B1C1

(2)写出△A1B1C1 各顶点坐标;

(3)求△ABC 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=(m+1)x2|m|n+4.

(1)当mn为何值时,此函数是一次函数?

(2)当mn为何值时,此函数是正比例函数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=BC,ABC≌△A1BC1,A1BAC于点E,A1C1分别交AC、BCD、F两点,观察并猜想线EA1FC有怎样的数量关系?并证明你的结论.

查看答案和解析>>

同步练习册答案