精英家教网 > 初中数学 > 题目详情

【题目】海上有一小岛,为了测量小岛两端A、B的距离,测量人员设计了一种测量方法,如图所示,已知B点是CD的中点,E是BA延长线上的一点,测得AE=8.3海里,DE=30海里,且DE⊥EC,cos∠D=
(1)求小岛两端A、B的距离;
(2)过点C作CF⊥AB交AB的延长线于点F,求sin∠BCF的值.

【答案】
(1)解:在Rt△CED中,∠CED=90°,DE=30海里,

∴cosD=

∴CE=40(海里),CD=50(海里).

∵B点是CD的中点,

∴BE= CD=25(海里)

∴AB=BE﹣AE=25﹣8.3=16.7(海里).

答:小岛两端A、B的距离为16.7海里.


(2)解:设BF=x海里.

在Rt△CFB中,∠CFB=90°,

∴CF2=CB2﹣BF2=252﹣x2=625﹣x2

在Rt△CFE中,∠CFE=90°,

∴CF2+EF2=CE2,即625﹣x2+(25+x)2=1600.

解得x=7.

∴sin∠BCF=


【解析】(1)在Rt△CED中,利用三角函数求出CE,CD的长,根据中点的定义求得BE的长,AB=BE﹣AE即可求解;(2)设BF=x海里.在Rt△CFB中,利用勾股定理求得CF2=CB2﹣BF2=252﹣x2=625﹣x2 . 在Rt△CFE中,列出关于x的方程,求得x的值,从而求得sin∠BCF的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:ABC是等腰直角三角形.A=90°,CE平分∠ACBAB于点E.

(1)如图1,若点D在斜边BC上,DM垂直平分BE,垂足为M.求证:BD=AE.

(2)如图2,过点BBFCECE的延长线于点F.CE=6,求BEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.

1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=_____;在图2中,OM是否平分∠CON?请说明理由;

2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;

3)将图1中的三角板绕点O按每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为_____(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,菱形ABCD中,AB=10cm,BD=12cm,对角线AC与BD相交于点O,直线MN以1cm/s从点D出发,沿DB方向匀速运动,运动过程中始终保持MN⊥BD,垂足是点P,过点P作PQ⊥BC,交BC于点Q.(0<t<6)
(1)求线段PQ的长;(用含t的代数式表示)
(2)设△MQP的面积为y(单位:cm2),求y与t的函数关系式;
(3)是否存在某时刻t,使线段MQ恰好经过点O?若存在求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(探究)如图①,∠AFH和∠CHF的平分线交于点OEG经过点O且平行于FH,分别与ABCD交于点EG

(1)若∠AFH60°,∠CHF50°,则∠EOF_____度,∠FOH_____度.

(2)若∠AFH+CHF100°,求∠FOH的度数.

(拓展)如图②,∠AFH和∠CHI的平分线交于点OEG经过点O且平行于FH,分别与ABCD交于点EG.若∠AFH+CHFα,直接写出∠FOH的度数.(用含a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程
(1)解方程组:
(2)已知关于x的一元二次方程x2+2x﹣m=1有实数根,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=a(x﹣h)2+k经过点A(0,1),且顶点坐标为B(1,2),它的对称轴与x轴交于点C.

(1)求此抛物线的解析式.
(2)在第一象限内的抛物线上求点P,使得△ACP是以AC为底的等腰三角形,请求出此时点P的坐标.
(3)上述点是否是第一象限内此抛物线上与AC距离最远的点?若是,请说明理由;若不是,请求出第一象限内此抛物线上与AC距离最远的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,要是四边形ABCD成为平行四边形,则应增加的条件是(
A.AB=CD
B.∠BAD=∠DCB
C.AC=BD
D.∠ABC+∠BAD=180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A(0,2),B(1,0),点C为线段AB的中点,将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.

(1)若该抛物线经过原点O,且a=﹣ ,求该抛物线的解析式;
(2)在(1)的条件下,点P(m,n)在抛物线上,且∠POB锐角,满足∠POB+∠BCD<90°,求m的取值范围.

查看答案和解析>>

同步练习册答案