精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=a(x﹣h)2+k经过点A(0,1),且顶点坐标为B(1,2),它的对称轴与x轴交于点C.

(1)求此抛物线的解析式.
(2)在第一象限内的抛物线上求点P,使得△ACP是以AC为底的等腰三角形,请求出此时点P的坐标.
(3)上述点是否是第一象限内此抛物线上与AC距离最远的点?若是,请说明理由;若不是,请求出第一象限内此抛物线上与AC距离最远的点的坐标.

【答案】
(1)

解:∵抛物线y=a(x﹣h)2+k顶点坐标为B(1,2),

∴y=a(x﹣1)2+2,

∵抛物线经过点A(0,1),

∴a(0﹣1)2+2=1,

∴a=﹣1,

∴此抛物线的解析式为y=﹣(x﹣1)2+2或y=﹣x2+2x+1;


(2)

解:∵A(0,1),C(1,0),

∴OA=OC,

∴△OAC是等腰直角三角形.

过点O作AC的垂线l,根据等腰三角形的“三线合一”的性质知:l是AC的中垂线,

∴l与抛物线的交点即为点P.

如图,直线l的解析式为y=x,

解方程组

(不合题意舍去),

∴点P的坐标为( );


(3)

解:点P不是第一象限内此抛物线上与AC距离最远的点.

由(1)知,点C的坐标为(1,0).

设直线AC的解析式为y=kx+b,

,解得

∴直线AC的解析式为y=﹣x+1.

设与AC平行的直线的解析式为y=﹣x+m.

解方程组

代入消元,得﹣x2+2x+1=﹣x+m,

∵此点与AC距离最远,

∴直线y=﹣x+m与抛物线有且只有一个交点,

即方程﹣x2+2x+1=﹣x+m有两个相等的实数根.

整理方程得:x2﹣3x+m﹣1=0,

△=9﹣4(m﹣1)=0,解之得m=

则x2﹣3x+ ﹣1=0,解之得x1=x2= ,此时y=

∴第一象限内此抛物线上与AC距离最远的点的坐标为( ).


【解析】(1)由抛物线y=a(x﹣h)2+k的顶点坐标是B(1,2)知:h=1,k=2,则y=a(x﹣1)2+2,再把A点坐标代入此解析式即可;(2)易知△OAC是等腰直角三角形,可得AC的垂直平分线是直线y=x,根据“线段垂直平分线上的点到线段两个端点的距离相等”知直线y=x与抛物线的交点即为点P,解方程组即可求出P点坐标;(3)先求出第一象限内此抛物线上与AC距离最远的点的坐标,再与P点的坐标比较进行判断.满足条件的点一定是与直线AC平行且与抛物线有唯一交点的直线与抛物线相交产生的,易求出直线AC的解析式,设出与AC平行的直线的解析式,令它与抛物线的解析式组成的方程组有唯一解,求出交点坐标,通过判断它与点P是否重合来判断点P是否是第一象限内此抛物线上与AC距离最远的点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等腰ABC的底边长为8cm,腰长为5cm,一动点P在底边上从B向C以0.25cm/s的速度移动,请你探究:当P运动秒时,P点与顶点A的连线PA与腰垂直。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑摩托车从B地到A地,到达A地后立即按原路返回.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:

(1)直接写出y,y与x之间的函数关系式(不写过程);

(2)①求出点M的坐标,并解释该点坐标所表示的实际意义;

根据图象判断,x取何值时,y>y

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】海上有一小岛,为了测量小岛两端A、B的距离,测量人员设计了一种测量方法,如图所示,已知B点是CD的中点,E是BA延长线上的一点,测得AE=8.3海里,DE=30海里,且DE⊥EC,cos∠D=
(1)求小岛两端A、B的距离;
(2)过点C作CF⊥AB交AB的延长线于点F,求sin∠BCF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).

(1)画出与△ABC 关于 y 轴对称的图形△A1B1C1

(2)写出△A1B1C1 各顶点坐标;

(3)求△ABC 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正比例函数的图象和反比例函数的图象相交于A,B两点,点A在第二象限,点A的横坐标为﹣1,作ADx轴,垂足为D,O为坐标原点,SAOD=1.若x轴上有点C,且SABC=4,则C点坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=(m+1)x2|m|n+4.

(1)当mn为何值时,此函数是一次函数?

(2)当mn为何值时,此函数是正比例函数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的铅直高度BH与水平宽度AH的比)
(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414, 1.732)

(1)求点B
距水平面AE的高度BH;
(2)求广告牌CD的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有(  )
A.∠ADE=20°
B.∠ADE=30°
C.∠ADE=∠ADC
D.∠ADE=∠ADC

查看答案和解析>>

同步练习册答案