6£®A¡¢BÁ½¸ÛÖ®¼äµÄ¾àÀëΪ150ǧÃ×£®
£¨1£©Èô´ÓA¸Û¿Úµ½B¸Û¿ÚΪ˳Á÷º½ÐУ¬ÇÒÂÖ´¬ÔÚ¾²Ë®ÖеÄËٶȱÈË®Á÷ËÙ¶È¿ì15ǧÃ×/ʱ£¬Ë³Á÷ËùÓÃʱ¼ä±ÈÄæÁ÷ÉÙÓÃ4Сʱ£¬ÇóË®Á÷µÄËÙ¶È£»
£¨2£©ÈôÂÖ´¬ÔÚ¾²Ë®ÖеÄËÙ¶ÈΪvǧÃ×/ʱ£¬Ë®Á÷ËÙ¶ÈΪuǧÃ×/ʱ£¬¸Ã´¬´ÓA¸Û˳Á÷º½Ðе½B¸Û£¬ÔÙ´ÓB¸ÛÄæÁ÷º½Ðзµ»Øµ½A¸ÛËùÓõÄʱ¼äΪt1£»ÈôÂÖ´¬´ÓA¸Ûº½Ðе½B¸ÛÔÙ·µ»Øµ½A¸Û¾ùΪ¾²Ë®º½ÐУ¬ÇÒËùÓÃʱ¼äΪt2£¬Çë±È½Ït1Óët2µÄ´óС£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÉèË®Á÷µÄËÙ¶ÈΪxǧÃ×/ʱ£¬ÔòÂÖ´¬ÔÚ¾²Ë®ÖеÄËÙ¶ÈΪ£¨x+15£©Ç§Ã×/ʱ£¬ÀûÓÃʱ¼ä²îÁз½³ÌµÃ$\frac{150}{x+15+x}$=$\frac{150}{x+15-x}$-4£¬È»ºó½â·½³Ì£¬ÔÙ½øÐмìÑéµÃµ½xµÄÖµ¼´¿É£»
£¨2£©ÀûÓÃËٶȹ«Ê½µÃµ½t1=$\frac{150}{v+u}$+$\frac{150}{v-u}$=$\frac{300}{£¨v-u£©£¨v+u£©}$•v£¬t2=$\frac{300}{v}$£¬È»ºóÀûÓÃÇó²î·¨±È½Ï´óС¼´¿É£®

½â´ð ½â£º£¨1£©ÉèË®Á÷µÄËÙ¶ÈΪxǧÃ×/ʱ£¬ÔòÂÖ´¬ÔÚ¾²Ë®ÖеÄËÙ¶ÈΪ£¨x+15£©Ç§Ã×/ʱ£¬
¸ù¾ÝÌâÒâµÃ$\frac{150}{x+15+x}$=$\frac{150}{x+15-x}$-4£¬½âµÃx=5£¬¾­¼ìÑéx=5ÊÇÔ­·½³ÌµÄ½â£¬
´ð£ºË®Á÷µÄËÙ¶ÈΪ5ǧÃ×/ʱ£»
£¨2£©t1=$\frac{150}{v+u}$+$\frac{150}{v-u}$=$\frac{300}{£¨v-u£©£¨v+u£©}$•v£¬t2=$\frac{300}{v}$£¬
t1-t2=$\frac{300}{£¨v-u£©£¨v+u£©}$•v-$\frac{300}{v}$=$\frac{300}{v£¨v-u£©£¨v-u£©}$[v2-£¨v-u£©£¨v-u£©]=$\frac{300}{v£¨v-u£©£¨v-u£©}$•u2£¬
ÒòΪu£¾0£¬
ËùÒÔt1-t2£¾0£¬
¼´t1£¾t2£®

µãÆÀ ±¾Ì⿼²éÁËÁдúÊýʽ£º°ÑÎÊÌâÖÐÓëÊýÁ¿ÓйصĴÊÓÓú¬ÓÐÊý×Ö¡¢×ÖĸºÍÔËËã·ûºÅµÄʽ×Ó±íʾ³öÀ´£¬¾ÍÊÇÁдúÊýʽ£® ½â¾ö±¾ÌâµÄ¹Ø¼üÊDZíʾÂÖ´¬Ë³Ë®ºÍÄæË®ÖеÄËÙ¶È£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ò»Á¾¿Í³µÉÏÔ­ÓУ¨6a-2b£©ÈË£¬ÖÐ;ϳµÒ»°ëÈËÊý£¬ÓÖÉϳµÈô¸ÉÈË£¬Õâʱ³µÉϹ²ÓУ¨12a-5b£©ÈË£®ÎÊÉϳµµÄ³Ë¿ÍÊÇ£¨9a-4b£©ÈË£¬µ±a=2£¬b=3ʱ£¬ÉϳµµÄ³Ë¿ÍÊÇ6ÈË£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÇóÏÂÁи÷ʽÖеÄxµÄÖµ»ò¼ÆË㣺
£¨1£©£¨x+1£©2=16£»
£¨2£©£¨-2£©3¡Á$\sqrt{\frac{121}{4}}$+£¨-1£©2013-$\root{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼ÆË㣺4sin230¡ã•tan45¡ã+$\frac{2}{\sqrt{3}-2}$+4$\sqrt{1-2sin30¡ãcos30¡ã}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬Rt¡÷ABCÖУ¬CDÊÇб±ßABÉϵĸߣ®ÇóÖ¤£º
£¨1£©¡÷ACD¡×¡÷ABC£»
£¨2£©¡÷CBD¡×¡÷ABC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨$\frac{2x{y}^{2}}{x+y}$£©3¡Â£¨$\frac{x{y}^{3}}{{x}^{2}-{y}^{2}}$£©2¡Â[$\frac{1}{2£¨x-y£©}$]2£¬ÆäÖÐx=-$\frac{1}{2}$£¬y=$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÔÚ¡÷ABCÖУ¬AB=AC£¬BD=AE£¬¡ÏB=¡ÏDEC£¬ÇóÖ¤£ºAD=CD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªA£¨-1£¬-1£©¡¢B£¨2£¬3£©£¬ÈôÒªÔÚxÖáÉÏÕÒÒ»µãP£¬Ê¹|AP-BP|×£¬ÔòµãPµÄ×ø±êΪ£¨-2.5£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÇóÖµ£º
£¨1£©£¨$\sqrt{48}$-4$\sqrt{\frac{1}{8}}$£©-£¨3$\sqrt{\frac{1}{3}}$-2$\sqrt{0.5}$£©£»
£¨2£©£¨$\sqrt{2}$-$\sqrt{3}$£©2+2$\sqrt{\frac{1}{3}}$¡Á3$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸