精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数y=ax2+bx+c图像的一部分,其对称轴是直线x=1,且过点(3,0),下列说法:abc02ab=04a+2b+c0(5,y1)(2.5,y2)是抛物在线两点,则y1y2,其中正确的是(

A② B②③ C②④ D

【答案】C.

【解析】

试题二次函数的图象开口向上,

a>0,

二次函数的图象交y轴的负半轴于一点,

c<0,

对称轴是中线x=-1,

-=-1,

b=2a>0,

abc<0,

∴①错误;

b=2a,

2a-b=0,

∴②正确;

把x=2代入y=ax2+bx+c得:y=4a+2b+c,

从图象可知,当x=2时y<0,

即4a+2b+c<0,

∴③错误;

(-5,y1)关于直线x=-1的对称点的坐标是(3,y1),

当x>-1时,y随x的增大而增大,3<5,

y1>y2

∴④正确;

即正确的有2个②④

故选:C.

考点: 二次函数图象与系数的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:

1ctan30°=

2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PBx轴于点B,且AC=BC.

(1)求一次函数、反比例函数的解析式;

(2)根据图象直接写出kx+b<x的取值范围;

(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知的半径为的两条弦,,则弦之间的距离是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校的一个数学兴趣小组在本校学生中开展主题为环广西公路自行车世界巡回赛的专题调查活动,取随机抽样的方式进行问卷调查,问卷调查的结果分为非常了解”、“比较了解”、“基本了解”、“不太了解四个等级,分别记作A、B、C、D;并根据调查结果绘制成如图所示不完整的统计图,请结合图中信息解答下列问题:

(1)请求出本次被调查的学生共多少人,并将条形统计图补充完整.

(2)估计该校1500名学生中“C等级的学生有多少人?

(3)在“B等级的学生中,初三学生共有4人,其中13女,在这4个人中,随机选出2人进行采访,则所选两位同学中有男同学的概率是多少?请用列表法或树状图的方法求解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),直线x轴交于点A、与y轴交于点D,以AD为腰,以x轴为底作等腰梯形ABCD(ABCD),且等腰梯形的面积是8,抛物线经过等腰梯形的四个顶点.

图(1)

(1) 求抛物线的解析式;

(2) 如图(2)若点PBC上的—个动点(与BC不重合),以P为圆心,BP长为半径作圆,与轴的另一个交点为E,作EFAD,垂足为F,请判断EFP的位置关系,并给以证明;

图(2)

(3) 在(2)的条件下,是否存在点P,使Py轴相切,如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,直线的函数解析式为,与轴交于点,与轴交于点

1)直接写出点的坐标________点的坐标________

2)若点为线段上的一个动点,作轴于点轴于点,连接,问:①若的面积为,求关于的函数关系式;②直接写出的最小值________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.

(1)若该方程有两个实数根,求m的最小整数值;

(2)若方程的两个实数根为x1,x2,且(x1﹣x22+m2=21,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2﹣4x+c经过点A(0,﹣6)和B(3,﹣9).

(1)求出抛物线的解析式;

(2)写出抛物线的对称轴方程及顶点坐标;

(3)点P(m,m)与点Q均在抛物线上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q的坐标;

(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M,使得QMA的周长最小.

查看答案和解析>>

同步练习册答案