精英家教网 > 初中数学 > 题目详情
6.如图,在正方形ABCD中,E为直线AB上的动点(不与A,B重合),作射线DE并绕点D逆时针旋转45°,交直线BC边于点F,连结EF.
探究:当点E在边AB上,求证:EF=AE+CF.
应用:(1)当点E在边AB上,且AD=2时,则△BEF的周长是4.
(2)当点E不在边AB上时,EF,AE,CF三者的数量关系是EF=CF-AE或EF=AE-CF.

分析 探究:作辅助线,构建全等三角形,证明△DAG≌△DCF(SAS),得∠1=∠3,DG=DF,再证明△GDE≌△FDE(SAS),根据EG的长可得结论;
应用:
(1)利用探究的结论计算三角形周长为4;
(2)分两种情况:①点E在BA的延长线上时,如图2,EF=CF-AE,②当点E在AB的延长线上时,如图3,
EF=AE-CF,两种情况都是作辅助线,构建全等三角形,证明两三角形全等得线段相等,根据线段的和与差得出结论.

解答 探究:证明:如图,延长BA到G,使AG=CF,连接DG,
∵四边形ABCD是正方形,
∴DA=DC,∠DAG=∠DCF=90°,
∴△DAG≌△DCF(SAS),
∴∠1=∠3,DG=DF,
∵∠ADC=90°,∠EDF=45°,
∴∠EDG=∠1+∠2=∠3+∠2=45°=∠EDF,
∵DE=DE,
∴△GDE≌△FDE(SAS),
∴EF=EG=AE+AG=AE+CF;
应用:
解:(1)△BEF的周长=BE+BF+EF,
由探究得:EF=AE+CF,
∴△BEF的周长=BE+BF+AE+CF=AB+BC=2+2=4,
故答案为:4;
(2)当点E不在边AB上时,分两种情况:
①点E在BA的延长线上时,如图2,
EF=CF-AE,理由是:
在CB上取CG=AE,连接DG,
∵∠DAE=∠DCG=90°,AD=DC,
∴△DAE≌△DCG(SAS)
∴DE=DG,∠EDA=∠GDC
∵∠ADC=90°,
∴∠EDG=90°
∴∠EDF+∠FDG=90°,
∵∠EDF=45°,
∴∠FDG=90°-45°=45°,
∴∠EDF=∠FDG=45°,
在△EDF和△GDF中,
∵$\left\{\begin{array}{l}{DE=DG}\\{∠EDF=∠GDF}\\{DF=DF}\end{array}\right.$,
∴△EDF≌△GDF(SAS),
∴EF=FG,
∴EF=CF-CG=CF-AE;
②当点E在AB的延长线上时,如图3,
EF=AE-CF,理由是:
把△DAE绕点D逆时针旋转90°至△DCG,可使AD与DC重合,连接DG,
由旋转得:DE=DG,∠EDG=90°,AE=CG,
∵∠EDF=45°,
∴∠GDF=90°-45°=45°,
∴∠EDF=∠GDF,
∵DF=DF,
∴△EDF≌△GDF,
∴EF=GF,
∴EF=CG-CF=AE-CF;
综上所述,当点E不在边AB上时,EF,AE,CF三者的数量关系是:EF=CF-AE或EF=AE-CF;
故答案为:EF=CF-AE或EF=AE-CF.

点评 本题考查了正方形的性质、等腰直角三角形的性质、旋转的性质,通过类比联想,引申拓展,可达到解一题知一类题的目的,本题通过旋转一三角形的辅助线作法,构建另一三角形全等,得出结论,从而解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质检测.体质检测的结果分为四个等级:优秀、良好、合格、不合格:根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:

(1)在扇形统计图中,“合格”的百分比为多少?
(2)将条形统计图补充完整:
(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”,等级的学生约有多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知在平面直角坐标系中,一次函数y=$\frac{3}{4}$x+3的图象与y轴交于点A,点M在正比例函数y=$\frac{3}{2}$x的图象x>0的那部分上,且MO=MA(O为坐标原点).
(1)求线段AM的长;
(2)若反比例函数y=$\frac{k}{x}$的图象经过点M关于y轴的对称点M′,求反比例函数解析式,并直接写出当x>0时,$\frac{3}{4}$x+3与$\frac{k}{x}$的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在四边形ABCD中,E,F分别在AD和BC上,AB∥EF∥DC,且DE=3,DA=5,CF=4,则FB等于(  )
A.$\frac{3}{2}$B.$\frac{8}{3}$C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列三个三角形中相似的是(  )
A.A与BB.A与CC.B与CD.A,B,C都相似

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=$\frac{k}{x}$(k≠0)的图象交于第二、第四象限内的A,B两点,与y轴交于C点,过A作AH⊥y轴,垂足为H,AH=4,tan∠AOH=$\frac{4}{3}$,点B的坐标为(m,-2).
(1)求△AHO的周长;
(2)求该反比例函数和一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.不等式组$\left\{\begin{array}{l}{3(x+2)>2x+5}\\{\frac{x-1}{2}≤\frac{x}{3}}\end{array}\right.$的最小整数解是0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:20160-|-$\sqrt{2}$|+$(-\frac{1}{3})^{-1}$+2sin45°.

查看答案和解析>>

同步练习册答案