分析 探究:作辅助线,构建全等三角形,证明△DAG≌△DCF(SAS),得∠1=∠3,DG=DF,再证明△GDE≌△FDE(SAS),根据EG的长可得结论;
应用:
(1)利用探究的结论计算三角形周长为4;
(2)分两种情况:①点E在BA的延长线上时,如图2,EF=CF-AE,②当点E在AB的延长线上时,如图3,
EF=AE-CF,两种情况都是作辅助线,构建全等三角形,证明两三角形全等得线段相等,根据线段的和与差得出结论.
解答 探究:证明:如图,延长BA到G,使AG=CF,连接DG,
∵四边形ABCD是正方形,
∴DA=DC,∠DAG=∠DCF=90°,
∴△DAG≌△DCF(SAS),
∴∠1=∠3,DG=DF,
∵∠ADC=90°,∠EDF=45°,
∴∠EDG=∠1+∠2=∠3+∠2=45°=∠EDF,
∵DE=DE,
∴△GDE≌△FDE(SAS),
∴EF=EG=AE+AG=AE+CF;
应用:
解:(1)△BEF的周长=BE+BF+EF,
由探究得:EF=AE+CF,
∴△BEF的周长=BE+BF+AE+CF=AB+BC=2+2=4,
故答案为:4;
(2)当点E不在边AB上时,分两种情况:
①点E在BA的延长线上时,如图2,
EF=CF-AE,理由是:
在CB上取CG=AE,连接DG,
∵∠DAE=∠DCG=90°,AD=DC,
∴△DAE≌△DCG(SAS)
∴DE=DG,∠EDA=∠GDC
∵∠ADC=90°,
∴∠EDG=90°
∴∠EDF+∠FDG=90°,
∵∠EDF=45°,
∴∠FDG=90°-45°=45°,
∴∠EDF=∠FDG=45°,
在△EDF和△GDF中,
∵$\left\{\begin{array}{l}{DE=DG}\\{∠EDF=∠GDF}\\{DF=DF}\end{array}\right.$,
∴△EDF≌△GDF(SAS),
∴EF=FG,
∴EF=CF-CG=CF-AE;
②当点E在AB的延长线上时,如图3,
EF=AE-CF,理由是:
把△DAE绕点D逆时针旋转90°至△DCG,可使AD与DC重合,连接DG,
由旋转得:DE=DG,∠EDG=90°,AE=CG,
∵∠EDF=45°,
∴∠GDF=90°-45°=45°,
∴∠EDF=∠GDF,
∵DF=DF,
∴△EDF≌△GDF,
∴EF=GF,
∴EF=CG-CF=AE-CF;
综上所述,当点E不在边AB上时,EF,AE,CF三者的数量关系是:EF=CF-AE或EF=AE-CF;
故答案为:EF=CF-AE或EF=AE-CF.
点评 本题考查了正方形的性质、等腰直角三角形的性质、旋转的性质,通过类比联想,引申拓展,可达到解一题知一类题的目的,本题通过旋转一三角形的辅助线作法,构建另一三角形全等,得出结论,从而解决问题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{3}{2}$ | B. | $\frac{8}{3}$ | C. | 5 | D. | 6 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com