【题目】如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于D,延长 AO交⊙O于E,连接CD,CE,若CE是⊙O的切线,解答下列问题:
(1)求证:CD是⊙O的切线;
(2)若平行四边形OABC的两边长是方程的两根,求平行四边形OABC的面积.
【答案】(1)、证明过程见解析;(2)、48.
【解析】
试题分析:(1)、连接OD,根据切线得出∠OEC=90°,根据OD=OA以及OC∥AD得出∠OAD=∠EOC,则∠EOC=∠DOC,结合OD=OE,OC=OC得出△ODC和△OEC全等,从而得出∠ODC=∠OEC=90°,得出切线;(2)、根据方程得出OC=10,OA=6,根据勾股定理得出CD=8,根据全等得出CE=8,然后计算四边形的面积.
试题解析:(1)、连OD,∵CE是⊙O的切线, ∠OEC=90O ,∵OD=OA,∴∠ODA=∠OAD,又∵OC//AD
∴∠OAD =∠EOC,∠DOC=∠ODA,∴∠EOC=∠DOC, 又∵OD=OE,OC=OC, ∴△ODC≌△OEC(SAS)
∴∠ODC=∠OEC=90 O, ∴CD是⊙O的切线。
(2)、,,即OC=10,OA=6 在Rt△ODC, CD=8 ∵△ODC≌△OEC ,CE=CD=8
∴平行四边形OABC的面积S=OA×CE=6×8=48
科目:初中数学 来源: 题型:
【题目】如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,
点C与点F分别是对应点,观察点与点的坐标之间的关系,
解答下列问题:
(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;
(2)若点P(a+3,4﹣b)与点Q(2a,2b﹣3)也是通过上述变换得到的对应点,求a,b的值.
(3)求图中△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入10元,记作+10元,则-8元的意义是( )
A. 收入8元 B. 支出8元 C. 支出-8元 D. 收入2元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是( )
A. ∠1=∠2 B. ∠A =∠2 C. △ABC≌△CED D. ∠A与∠D互为余角
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com