精英家教网 > 初中数学 > 题目详情
6.解方程组:
(1)$\left\{\begin{array}{l}{2x+y=4}\\{x-y=5}\end{array}\right.$       
(2)$\left\{\begin{array}{l}{2x+3y=12}\\{3x+4y=17}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{2x+y=4①}\\{x-y=5②}\end{array}\right.$,
①+②得:3x=9,即x=3,
把x=3代入②得:y=-2,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+3y=12①}\\{3x+4y=17②}\end{array}\right.$,
①×3-②×2得:y=2,
把y=2代入①得:x=3,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$.

点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.某市举行中学生“奋发有为建小康”演讲比赛,某同学将选手的得分情况进行统计,绘成如图所示的得分成绩统计图,下列四个论断:①众数为6分;②有8名选手的成绩高于8分;③中位数是8分;④得6分和9分的人数一样多,其中正确的是(  )
A.①②③B.②③④C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,直线AB分别与x轴、y轴交于点A(-2,0),B(0,3).直线CD分别与x轴、y轴交于点C(1,0),D(0,1),与直线AB交于点E.求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.画出数轴,并在数轴上表示出 2,-$\frac{1}{2}$,0,-3$\frac{1}{2}$;并用“<”连接.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.对于数据3,3,2,3,6,3,10,3,6,3,2,
(1)它们的平均数与众数的数值相等    
(2)它们的众数是3,
(3)它们的众数与中位数的数值不相等  
(4)它们的中位数与平均数的数值相等,
其中正确的结论个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.已知a、b互为相反数,c、d互为倒数,m的绝对值为2,$\frac{a+b}{m}$+m-2cd的值(  )
A.0B.-4C.1D.-4和0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列各式中,互为相反数的两个数是(  )
A.-5与$\frac{1}{5}$B.|-$\frac{1}{2}$|与$\frac{1}{2}$C.-2$\frac{1}{2}$与-0.4D.-(-5)与-5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.阅读下列材料:计算:$\frac{1}{12}$÷($\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{12}$)
解:原式的倒数为
($\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{12}$)÷$\frac{1}{12}$
=($\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{12}$)×12
=$\frac{1}{3}$×12-$\frac{1}{4}$×12+$\frac{1}{12}$×12
=2
故原式=$\frac{1}{2}$
请仿照上述方法计算:(-$\frac{1}{42}$)÷($\frac{1}{6}$-$\frac{3}{14}$+$\frac{2}{3}$-$\frac{2}{7}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.某地区夏季高山的温度从山脚处开始每升高100米,降低0.7℃,如果山脚温度是28℃,那么比山脚高300米处的温度为24.5;一般地,比山脚高x米处的温度为28-$\frac{7x}{1000}$.

查看答案和解析>>

同步练习册答案